EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI"

Transcripción

1 EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI 1) A través del medidor Venturi de la figura fluye hacia abajo aceite con gravedad específica de 0,90. Si la deflexión del manómetro h es de 28 plg, determinar a) el caudal volumétrico del aceite. Tubería diámetro nominal 4 plg cedula 40 2) Para el medidor Venturi de la figura calcular la deflexión del manómetro h si la velocidad del flujo de agua en la sección de 25 mm de diámetro es de 10 m/s. 3) El fluido manométrico es mercurio de D.R.: 13,6

2 3) La tobera de flujo de la figura (placa de boquilla de flujo) se le emplea para medir la velocidad de flujo. Si instalamos la tobera de 4,60 plg. de diámetro dentro de un tubo de 14 plg. Cedula 40 calcular la velocidad de flujo en la sección 1 y la velocidad de flujo en la garganta de la tobera cuando hay un flujo de 7,50 pie 3 /s de agua a través del sistema. 4) Para medir el gasto de gasolina que fluye por un tubo de diámetro D=14mm se halla instalada una tobera de diámetro d=9mm y van acoplados los piezómetros (figura). Determinar el gasto de gasolina Q en L/s, si la diferencia de niveles de gasolina en los piezómetros es H=1,5 m. Cómo cambiará la diferencia de alturas H si la gasolina se sustituye por agua con el mismo gasto?

3 5) Encuentre q teórico para el flujo de agua en una tubería con diámetro interno D=100mm utilizando una boquilla de tipo de gran radio como el de la figura. En este problema la tubería es horizontal y el valor que indica el manómetro es h=140mm. Cuál es el flujo de masa de agua? El diámetro de garganta de la boquilla es de 60 mm. Tome. 6) Determine el caudal volumétrico para el flujo de aceite de densidad relativa D.R.=0,93 en una tubería de 3 ½ plg. Cedula 80 utilizando una placa orificio de bordes cuadrados como el de la figura. La tubería es horizontal. El valor de h es 5 plg. Use un coeficiente de garganta de 0,62. El diámetro de garganta es de 2 plg. El fluido manométrico es mercurio de densidad relativa de 13,4. 7) Calcular el caudal de agua que circula por la tubería de la figura, h=0,5m 8) Hallar la velocidad de la corriente de agua en el tubo si la lectura del manómetro de mercurio unido al tubo de Pitot y a los orificios de presión estática es h=600mm

4 9) En el sistema esquematizado en la figura, despreciando las perdidas, se pide: a) Caudal circulante. b) Valores de R 1 y R 2. c) Razonar si son correctas las posiciones relativas de los meniscos tal como están dibujados. Respuestas: 7,78 L/s; 0,67m y 0,492m; mal y bien.

5 EJERCICIOS RESUELTOS DE ECUACIÓN DE BERNOULLI 1) 1 Figura 1 1) Enunciado: Se debe calcular la velocidad de flujo en la sección A y el caudal respectivo. La densidad relativa del fluido manométrico es D.R.=1,25. El concepto a manejar en este caso es la Ecuación de Bernoulli simple y el concepto de Ley de Continuidad, ya que se tienen datos que muestran valores de diferencia de presión entre dos puntos A y B, diferencias de altura y diferencias de velocidad entre dos planos piezométricos A y B. La nomenclatura a determinar es: 2) Esquema: En la figura 2 se muestra el esquema con el plano piezométrico de referencia. Escoja este plano debido a que se conocen las alturas desde si hacia los planos piezométricos A y B. Utilice a y b para denotar los planos piezométricos en los meniscos del manómetro diferencial. b Z=0 Figura 2 3) Suposiciones, hipótesis y aproximaciones: a Suponga lo siguiente: a) no existen perdidas desde A a B, b) no existen bombas ni turbinas, c) la aceleración de gravedad es g=9,81 m/s 2, d) la densidad del agua se obtiene a 60 C, e) existe

6 flujo estacionario, f) fluido incompresible, g) la sección de tubería es circular y h) densidad de la sustancia de trabajo que fluye por la tubería. es la 4) Leyes Físicas: Utilice la Ecuación de Bernoulli simple desde A a B: Maneje ahora la ecuación de continuidad: Despéjese de (2): Donde y son los cuadrados de los diámetros internos en las secciones A y B, respectivamente. Sustitúyase (3) en (1), despeje parcialmente y obtenga la ecuación (4): Ahora bien, la diferencia de carga de presión se evalúa tomando en cuenta el manómetro diferencial conectado como muestra la figura. Emplee Bernoulli estático entre el plano piezométrico A y el a, se tiene: Aplique Bernoulli estático entre el plano piezométrico a y el b, se tiene: Despeje de (6) y sustituya en (5):

7 Utilice Bernoulli estático entre el plano piezométrico b y el B, se tiene: Despeje de (8) y sustituya en (7): Despéjese de (9) la diferencia de presiones: Sustituya (10) en (4), suprima términos semejantes y despeje : 5) Propiedades: Con respecto al plano piezométrico escogido por usted, tiene que:, por lo tanto: 6) Cálculos: Sustituya las propiedades del fluido manométrico y del agua, la diferencia de altura del manómetro, los diámetros de la tubería y de la garganta y la aceleración de gravedad en la ecuación (11), obtenga:

8 Consiga el caudal en B por medio de la ecuación (2): Obtenga la velocidad en A utilizando la ecuación (3): El caudal en A es por tanto: 7) Análisis y razonamiento: De este ejercicio, que al principio se vio algo complicado se puede extraer alguna conclusión: a) El montaje anterior sirve para medir la velocidad de flujo teórica promedio aguas arriba en la tubería, realizando un cálculo, extrayendo del montaje los siguientes cinco (5) parámetros: 1) diferencia de altura del manómetro, 2) diámetro de la tubería, 3) diámetro de la garganta del venturi, 4) densidad del fluido manométrico y 5) temperatura del fluido de la tubería para medir su densidad. b) El caudal calculado es idéntico en la garganta, y luego en la tubería aguas abajo según la ley de continuidad. c) El valor calculado de caudal representa el caudal teórico. Para obtener el caudal real (el real es menor que el teórico) se emplea un coeficiente determinado en forma experimental C D : coeficiente de descarga luego: d) Cuando no se mide con manómetro diferencial sino con manómetros tipo Bourdon, colocados en la tubería aguas arriba y en la garganta, la velocidad se deduce a partir de la ecuación (4): Donde es la diferencia de altura geodésica entre la entrada y la garganta del Venturi. e) Las ecuaciones (11) y (12) sirven para determinar la velocidad teórica en la garganta en un medidor tipo boquilla de flujo redondeada y placa orificio.

9 Solución al ejercicio 7) 1) Enunciado: Según la figura mostrada se tiene un tubo de Pitot sencillo (medidor de presión total). La deducción de que es un tubo de Pitot y no de Prandtl es que el piezómetro de este instrumento no está conectado a la tubería. Se tienen las dimensiones de las tuberías, h=0,5m. El concepto a emplear es la ecuación de continuidad y la ecuación de Bernoulli sin interacciones. Se pide: Calcular el caudal de agua que circula por la tubería, es decir: 2) Esquema: Se escoge el nivel piezométrico de referencia tal como se muestra. Se identifican las secciones de flujo 1 y 2 tal como se muestra para aplicar la ecuación de Bernoulli. 1 Flujo de agua h=0,5m 2 Z=0 3) Suposiciones: Se ignora fricción, no hay bombas ni turbinas. La densidad del agua es 1000 kg/m 3. La aceleración es de 9,81m/s 2. El fluido manométrico tiene densidad relativa de 13,6. Las medidas internas de las tuberías son las mostradas en el esquema. 4) Leyes Físicas: Se aplica la ecuación de un tubo de Pitot para encontrar presión estática en la corriente arriba del medidor, es decir, la ecuación (13): Donde: : es la velocidad teórica del flujo medida por el Pitot, : es la presión manométrica estática de la corriente en ese punto, : es la densidad del fluido manométrico, : es la diferencia de altura del fluido manométrico en el piezómetro y : es la densidad de la sustancia de trabajo que fluye en la tubería.

10 Debido a que la presión estática es una variable y la velocidad también, se debe encontrar una ecuación que combinada con la ecuación (13) permita despejar la velocidad. Aplicando Bernoulli entre la sección 1 y 2, se tiene: Del esquema se deduce que: y, luego: Aplicando la ley de continuidad entre 1 y 2, se deriva que: Sustituyendo (16) en (15), se tiene: Sustituyendo la ecuación (13) en la (17) y despejando se tiene: 5) Propiedades:

11 6) Cálculos: Sustituyendo valores en la ecuación (18), se obtiene: El caudal se obtiene mediante la ecuación de flujo volumétrico: 7) Análisis, comprobación y razonamiento: I. El valor calculado de es teórico. II. La ecuación (13) se deriva previamente, realizando un análisis de ecuación de Bernoulli en un tubo Pitot, conectado conforme al esquema presentado en este problema, despreciando perdidas.

2. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN

2. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN . ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN CONDUCCIONES A PRESIÓN.1. Introducción.. Descripción de la instalación fluidomecánica.3. Descripción de la actividad práctica.4. Conceptos

Más detalles

Laboratorio de Mecánica de Fluidos. Práctica de Laboratorio 1 CAUDALÍMETROS Y TUBO DE PITOT

Laboratorio de Mecánica de Fluidos. Práctica de Laboratorio 1 CAUDALÍMETROS Y TUBO DE PITOT Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola Laboratorio de Mecánica de Fluidos Práctica de Laboratorio 1 CAUDALÍMETROS Y TUBO DE PITOT

Más detalles

PRESENTACION 5% EXÁMEN RÁPIDO 10% FORMATO 10% Caída de Presión en Tuberías CALCULOS 20% RESULTADOS 20% NOMBRE

PRESENTACION 5% EXÁMEN RÁPIDO 10% FORMATO 10% Caída de Presión en Tuberías CALCULOS 20% RESULTADOS 20% NOMBRE Práctica Mecánica de Fluidos PRESENTACION 5% EXÁMEN RÁPIO 0% FORMATO 0% Caída de Presión en Tuberías CALCULOS 0% RESULTAOS 0% NOMBRE ISCUSION E RESULTAOS 5% MATRICULA CONCLUSIONES 0% PROFESOR INSTRUCTOR

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 04. Dinámica de Fluidos Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo Licencia:

Más detalles

Laboratorio orio de Operaciones Unitarias I

Laboratorio orio de Operaciones Unitarias I Laboratorio orio de Operaciones Unitarias I 1 República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio

Más detalles

PRÁCTICA: TUNEL DE VIENTO

PRÁCTICA: TUNEL DE VIENTO PRÁCTICA: TUNEL DE VIENTO htttp://www.uco.es/moodle Descripción de los equipos y esquema de la instalación El equipo utilizado en esta práctica es un túnel de aerodinámico subsónico HM 70 con un tramo

Más detalles

BALANCE DE MASA Y ENERGÍA EN TUBERIAS Y ACCESORIOS HIDRAULICOS (C206)

BALANCE DE MASA Y ENERGÍA EN TUBERIAS Y ACCESORIOS HIDRAULICOS (C206) UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE INGENIERIA MECÁNICA AREA DE TERMOFLUIDOS GUIA DE LABORATORIO DE MECANICA DE FLUIDOS BALANCE DE MASA Y ENERGÍA EN TUBERIAS Y ACCESORIOS HIDRAULICOS (C06)

Más detalles

FLUIDOS IDEALES EN MOVIMIENTO

FLUIDOS IDEALES EN MOVIMIENTO FLUIDOS IDEALES EN MOVIMIENTO PREGUNTAS 1. En que principio esta basado la ecuación de Bernoulli. 2. La velocidad del agua en una tubería horizontal es de 6 cm. de diámetro, es de 4 m/s y la presión de

Más detalles

PRÁCTICA: CANAL HIDRODINÁMICO

PRÁCTICA: CANAL HIDRODINÁMICO PRÁCTICA: CANAL HIDRODINÁMICO htttp://www3.uco.es/moodle Descripción de los equipos y esquema de la instalación El equipo utilizado para esta práctica es un Canal Hidrodinámico para ensayo de una presa

Más detalles

INSTRUMENTOS DE CAUDAL

INSTRUMENTOS DE CAUDAL MEDICIÓN DE CAUDAL INSTRUMENTOS DE CAUDAL El caudal es la variable de proceso básica más difícil de medir. Existen numerosos tipos de medidores y transmisores: Elementos deprimógenos Transmisores de presión

Más detalles

FLUJO DE FLUIDOS. - m sal = DE VC. o m. m ent. - E sal. E ent. o E FUNDAMENTO DEL FLUJO DE FLUIDOS

FLUJO DE FLUIDOS. - m sal = DE VC. o m. m ent. - E sal. E ent. o E FUNDAMENTO DEL FLUJO DE FLUIDOS FUNDAMENTO DEL FLUJO DE FLUIDOS Los tres principios fundamentales que se aplican al flujo de fluidos son: El principio de de la conservación de la masa, a partir de del cual se establece la ecuación de

Más detalles

Agustin Martin Domingo

Agustin Martin Domingo Mecánica de fluidos. Física y Mecánica de las Construcciones.. Martín. Grupo F. ETSM-UPM 1 1. gua de mar de densidad 1,083 g/cm 3 alcanza en un depósito grande una altura de1,52 m. El depósito contiene

Más detalles

1. ACTIVIDAD ACADÉMICA MEDIDA DE CAUDALES Y DE PRESIONES

1. ACTIVIDAD ACADÉMICA MEDIDA DE CAUDALES Y DE PRESIONES 1. ACTIVIDAD ACADÉMICA MEDIDA DE CAUDALES Y DE PRESIONES 1.1. Introducción 1.2. Descripción de la instalación fluidomecánica 1.3. Descripción de la actividad práctica propuesta Profesor: Inmaculada Pulido

Más detalles

Laboratorio de Mecánica de Fluidos. Práctica de Laboratorio 2 FLUJO DE AIRE A TRAVÉS DE TUBERÍAS Y TOBERAS

Laboratorio de Mecánica de Fluidos. Práctica de Laboratorio 2 FLUJO DE AIRE A TRAVÉS DE TUBERÍAS Y TOBERAS Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola Laboratorio de Mecánica de Fluidos Práctica de Laboratorio FLUJO DE AIRE A TRAVÉS DE TUBERÍAS

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA de HONDURAS del VALLE DE SULA. Asignatura: Mecánica de Fluidos. Catedrático: Ing. Covadonga Álvarez.

UNIVERSIDAD NACIONAL AUTONOMA de HONDURAS del VALLE DE SULA. Asignatura: Mecánica de Fluidos. Catedrático: Ing. Covadonga Álvarez. UNIVERSIDAD NACIONAL AUTONOMA de HONDURAS del VALLE DE SULA Asignatura: Mecánica de Fluidos Catedrático: Ing. Covadonga Álvarez Tema: Laboratorio de Venturi & Circuito Hidráulico de Perdidas Primarias

Más detalles

Carrera: EMM - 0525. Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM - 0525. Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Mecánica de Fluidos Ingeniería Electromecánica EMM - 0525 3 2 8 2.- HISTORIA DEL

Más detalles

Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola ESTÁTICA DE FLUIDOS

Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola ESTÁTICA DE FLUIDOS Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola ESTÁTICA DE FLUIDOS CAMPUS TECNOLÓGICO DE LA UNIVERSIDAD DE NAVARRA. NAFARROAKO UNIBERTSITATEKO

Más detalles

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA PROGRAMA INTEGRAL DE ASISTENCIA TÉCNICA Y CAPACITACIÓN PARA LA FORMACIÓN DE ESPECIALISTAS EN AHORRO Y USO EFICIENTE DE ENERGÍA ELÉCTRICA DE GUATEMALA CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 06. Flujo de Fluidos en Tuberías Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo

Más detalles

Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría.

Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría. Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría. Como proceder: a.-imprima los contenidos de esta guía, el mismo contiene tablas y gráficas importantes para el desarrollo de

Más detalles

PÉRDIDAS DE CARGAS POR FRICCIÓN

PÉRDIDAS DE CARGAS POR FRICCIÓN PÉRDIDAS DE CARGAS POR FRICCIÓN Objetivos Estudio de pérdidas de energía por fricción, tanto en tramos rectos de tuberías (pérdidas de carga lineales), como en diferentes s característicos de las instalaciones

Más detalles

HRE 01.1 GRUPO HIDRAULICO

HRE 01.1 GRUPO HIDRAULICO HRE 01.1 GRUPO HIDRAULICO Características de la bomba: Altura manométrica máxima 23 m.c.a. Caudal 20 / 160 l/min. H 21 / 10 m.c.a. H max. 23 m.c.a. H min. 10 m.c.a. Potencia consumida 750 W (1 HP). Potencia

Más detalles

Movimiento de fluidos ideales

Movimiento de fluidos ideales Movimiento de fluidos ideales Problema 6.1 Una avioneta vuela a una velocidad de 150 km/h a una altitud de 1.200 m. En un punto A del ala, la velocidad del aire relativa a la misma es de 65 m/s. Suponiendo

Más detalles

Capítulo 6. Fluidos reales

Capítulo 6. Fluidos reales Capítulo 6 Fluidos reales 1 Viscosidad El rozamiento en el movimiento de los fluidos se cuantifica a través del concepto de viscosidad, η, que se define como: F A = η v d El coeficiente de viscosidad tiene

Más detalles

INTRODUCCIÓN A LA CONVECCIÓN

INTRODUCCIÓN A LA CONVECCIÓN Diapositiva 1 INTRODUCCIÓN A LA CONVECCIÓN JM Corberán, R Royo 1 Diapositiva 1. CLASIFICACIÓN SEGÚN: ÍNDICE 1.1. CAUSA MOVIMIENTO FLUIDO - Forzada - Libre 1.. CONFIGURACIÓN DE FLUJO: - Flujo externo -

Más detalles

Equipo de Demostración de Medidores de Caudal FMDU

Equipo de Demostración de Medidores de Caudal FMDU Equipamiento Didáctico Técnico Equipo de Demostración de Medidores de Caudal FMDU w Productos Gama de Productos Equipos 8.-Mecánica de Fluidos y Aerodinámica DESCRIPCIÓN GENERAL El Equipo de Demostración

Más detalles

MEDICIÓN DE CAUDAL. Agosto de 2007

MEDICIÓN DE CAUDAL. Agosto de 2007 MEDICIÓN DE CAUDAL Capítulo del Trabajo final de los Ings. M. López García y M. Ramón, quienes gentilmente autorizaron su publicación en nuestra página web. Agosto de 007 Instrumentación y Comunicaciones

Más detalles

b) Determinar la densidad de un líquido, aplicando el principio de igualdad de presiones en puntos a igual profundidad en un fluido en reposo.

b) Determinar la densidad de un líquido, aplicando el principio de igualdad de presiones en puntos a igual profundidad en un fluido en reposo. 1 Departamento: Ciencias Básicas Laboratorio: Física y Química Asignatura: Física. PRESIÓN MANOMÉTRICA Objetivos específicos a) Medir las diferentes alturas y presión que se indique. b) Determinar la densidad

Más detalles

Sección 6: MEDICION DE CAUDALES Y PRESIONES

Sección 6: MEDICION DE CAUDALES Y PRESIONES Sección 6: MEDICION DE CAUDALES Y PRESIONES INTRODUCCIÓN Para conocer el funcionamiento de la red si es correcta o no, determinar la sobrecarga en determinadas arterias en oras punta, las presiones de

Más detalles

http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html

http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html PRACTICA NO. 1 CALIBRACION DE TRASNMISORES http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html Transductor de presión de silicio difundido Cuando no hay presión,

Más detalles

Laboratorio de Mecánica de Fluidos. Práctica de Laboratorio 4 PÉRDIDAS DE CARGA EN LOS COMPONENTES DE LAS INSTALACIONES HIDRÁULICAS

Laboratorio de Mecánica de Fluidos. Práctica de Laboratorio 4 PÉRDIDAS DE CARGA EN LOS COMPONENTES DE LAS INSTALACIONES HIDRÁULICAS Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola Laboratorio de Mecánica de Fluidos Práctica de Laboratorio 4 PÉRDIDAS DE CARGA EN LOS COMPONENTES

Más detalles

razón de 9 m 3 /min, como se muestra en la es de 1 Kf/cm 2. Cuál es la presión en el punto que en a?

razón de 9 m 3 /min, como se muestra en la es de 1 Kf/cm 2. Cuál es la presión en el punto que en a? 9.6 PROBLEMS RESUELTOS DE HIDRODINÁMIC.- Considérese una manguera de sección circular de diámetro interior de,0 cm, por la que fluye agua a una tasa de 0,5 litros por cada segundo. Cuál es la velocidad

Más detalles

Banco de ensayo de ventiladores

Banco de ensayo de ventiladores Banco de ensayo de ventiladores Área de Mecánica de Fluidos Centro olitécnico Superior Universidad de Zaragoza rof. Francisco Alcrudo Técnico Especialista edro Vidal rof. Javier Blasco 0. Requisitos para

Más detalles

(Fig. 43a). La presión en el fondo de la columna izquierda es p + ρgy 1. p + ρgy 1. + ρgy 2. = ρg (y 2. p - p atm. - y 1. = ρgy

(Fig. 43a). La presión en el fondo de la columna izquierda es p + ρgy 1. p + ρgy 1. + ρgy 2. = ρg (y 2. p - p atm. - y 1. = ρgy 3. El medidor de presión más simple es el manómetro de tubo abierto y consiste en lo siguiente: un tubo en forma de U contiene un líquido, comúnmente mercurio o agua; un extremo del tubo se conecta a un

Más detalles

El teorema de Torriccelli te da la manera de calcular la velocidad con la que sale el agua por el agujero. La fórmula de Torriccelli es :

El teorema de Torriccelli te da la manera de calcular la velocidad con la que sale el agua por el agujero. La fórmula de Torriccelli es : - 1 - EJEMPLOS DE APLICACIÓN DEL TEOREMA DE BERNOULLI ( IMPORTANTE ) Hay algunas situaciones que a veces toman en los parciales. Pueden ser preguntas teóricas o pueden ser problemas en donde haya que aplicar

Más detalles

ANEJO 6 CALCULOS DEL EQUIPO DE BOMBEO

ANEJO 6 CALCULOS DEL EQUIPO DE BOMBEO ANEJO 6 CALCULOS DEL EQUIPO DE BOMBEO INDICE 1. CALCULOS HIDRAULICOS... 3 1.1 DIÁMETRO DE LA TUBERÍA DE IMPULSIÓN DENTRO DEL POZO... 3 1.2 ALTURA MANOMÉTRICA... 4 2. CALCULOS ELÉCTRICOS - BAJA TENSION...

Más detalles

Mecánica de Energía. Pérdidas de Energía Total

Mecánica de Energía. Pérdidas de Energía Total Mecánica de Energía Pérdidas de Energía Total Fluidos compresibles e incompresibles Los fluidos incompresibles son aquellos en los que el volumen permanece constante independientemente de las fuerzas aplicadas,

Más detalles

Relación entre la ecuación de Bernoulli y la ecuación de la energía en flujo estacionario

Relación entre la ecuación de Bernoulli y la ecuación de la energía en flujo estacionario 3.7. Flujo sin fricción: la ecuación de Bernoulli 185 o p 1 1 2 V 2 1 gz 1 p 2 1 2 V 2 2 gz 2 cte (3.77) Esta es la ecuación de Bernoulli para un flujo estacionario incompresible y sin fricción a lo largo

Más detalles

4. ESTRUCTURAS HIDRÁULICAS I (AFORADORES)

4. ESTRUCTURAS HIDRÁULICAS I (AFORADORES) 4. ESTRUCTURAS HIDRÁULICAS I (AFORADORES) Objetivos El objetivo de la práctica es que el alumno aprenda a identificar y utilizar las estructuras hidráulicas que comúnmente se utilizan para medir el caudal

Más detalles

Caída de Presión en Tubos de Diferente Diámetro

Caída de Presión en Tubos de Diferente Diámetro Caída de Presión en Tubos de Diferente Diámetro Laboratorio de Operaciones Unitarias Equipo 4 Primavera 2008 México D.F., 12 de marzo de 2008 Alumnos: Arlette Mayela Canut Noval arlettecanut@hotmail.com

Más detalles

TUBERIAS. Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS

TUBERIAS. Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS TUBERIAS Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS INDICE 1.- MATERIALES... 3 2.- PERDIDAS DE CARGA... 4 2.1.- FACTORES QUE INFLUYEN EN LAS PERDIDAS DE CARGA... 4 2.2.- REGIMENES

Más detalles

Mediciones en Mecánica de Fluidos

Mediciones en Mecánica de Fluidos Mediciones en Mecánica de Fluidos En el laboratorio de ingeniería y en muchas situaciones industriales es importante medir las propiedades de fluidos y diversos parámetros de flujo, como presión, velocidad

Más detalles

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos).

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). 1) Explique los siguientes conceptos y/o ecuaciones: a) Circulación. B) Volumen de control. B) Teorema

Más detalles

Capítulo 2 Instrumentación industrial

Capítulo 2 Instrumentación industrial Capítulo 2 Instrumentación industrial 2.1 Algunas definiciones de instrumentación Acontinuaciónsedefinenunoscuantosconceptosdeusofrecuente en el campo de la instrumentación: Elevevación de cero = 25 ºC

Más detalles

Eductores de mezcla por chorro de líquido y sistemas de mezcla en tanque

Eductores de mezcla por chorro de líquido y sistemas de mezcla en tanque Eductores de mezcla por chorro de líquido y sistemas de mezcla en tanque Eductores de mezcla por chorro de líquido Los eductores de mezcla por chorro de líquido KÖRTING son el principal componente en sistemas

Más detalles

1 o ) Longitud equivalente del sistema referida a la tubería 1 2 o ) Caudal correspondiente a cada tubería

1 o ) Longitud equivalente del sistema referida a la tubería 1 2 o ) Caudal correspondiente a cada tubería Pérdidas en tuberías Problema 4.1 Determinar el tiempo de vaciado de la gasolina del tanque de la figura que tiene forma de un paralelepípedo rectangular con área de la base S = 0,5 m 2 y altura H = 0,6

Más detalles

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios.

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. TERMODINÁMICA (0068) PROFR. RIGEL GÁMEZ LEAL El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. 1. Suponga una máquina térmica que opera con el ciclo reversible de Carnot

Más detalles

DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA - TALLER N 1

DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA - TALLER N 1 UNIVERSIDAD FACULTAD DE LIBRE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA - TALLER N 1 NOMBRE DE LA ASIGNATURA: FISICA TERMICA TÍTULO: HIDRODINÁMICA DURACIÓN: BIBLIOGRAFÍA SUGERIDA: Sears, Zemansky

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE VACIADO DE TANQUES

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE VACIADO DE TANQUES APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE VACIADO DE TANQUES Mucos problemas físicos dependen de alguna manera de la geometría. Uno de ellos es la salida de

Más detalles

PROBLEMAS DE FLUIDOS. CURSO 2012-2013

PROBLEMAS DE FLUIDOS. CURSO 2012-2013 PROBEMAS DE FUIDOS. CURSO 0-03 PROBEMA. Principio de Arquímedes. Un bloque metálico de densidad relativa 7.86 se cuelga de un dinamómetro y se mide su peso. Después se introduce en un recipiente lleno

Más detalles

TALLER DE EFICIENCIA ENERGÉTICA EN SISTEMAS DE BOMBEO DE AGUA DE SERVICIO PÚBLICO MUNICIPAL. M. en I. Ramón Rosas Moya

TALLER DE EFICIENCIA ENERGÉTICA EN SISTEMAS DE BOMBEO DE AGUA DE SERVICIO PÚBLICO MUNICIPAL. M. en I. Ramón Rosas Moya TALLER DE EFICIENCIA ENERGÉTICA EN SISTEMAS DE BOMBEO DE AGUA DE SERVICIO PÚBLICO MUNICIPAL M. en I. Ramón Rosas Moya CARACTERÍSTICAS HIDRÁULICAS Uno de los aspectos más relevantes a definir con respecto

Más detalles

1 ESTUDIO SOBRE PERDIDAS DE CARGA

1 ESTUDIO SOBRE PERDIDAS DE CARGA 1 ESTUDIO SOBRE PERDIDAS DE CARGA La realización de este estudio fue motivada por la convicción de los fabricantes de que los datos existentes desde hace décadas sobre rugosidad y pérdidas de carga de

Más detalles

Efecto venturi. Efecto Venturi

Efecto venturi. Efecto Venturi M E C Á N I C A Efecto venturi Efecto Venturi M E C Á N I C A La dinámica de fluidos -frecuentemente llamada hidrodinámica, aunque este nombre se refiera sólo a líquidos- considera a éstos para su estudio

Más detalles

3. CÁLCULO HIDRÁULICO

3. CÁLCULO HIDRÁULICO 3. CÁLCULO HIDRÁULICO Fig. 3.60- Instalación pag. 3.23 CÁLCULO HIDRÁULICO SELECCIÓN DE DIÁMETRO Y CLASE DE LOS TUBOS DE PRESIÓN La selección del diámetro y clase de presión depende de los siguientes factores:

Más detalles

5. PÉRDIDAS DE CARGA EN CONDUCTOS CERRADOS O TUBERIAS

5. PÉRDIDAS DE CARGA EN CONDUCTOS CERRADOS O TUBERIAS 5. PÉRIAS E CARGA EN CONUCTOS CERRAOS O TUBERIAS 5. Perfiles de Velocidad: Laminar y Turbulento 5. Radio Hidráulico para Secciones no Circulares 5.3 Pérdidas Primarias y Secundarias 5.4 Ecuación de arcy

Más detalles

Ecuaciones unitarias en el flujo de fluidos

Ecuaciones unitarias en el flujo de fluidos Ecuaciones unitarias en el flujo de fluidos Ecuaciones unitarias en el flujo de fluidos Ecuación de Continuidad Ecuación de Bernoulli HIPOTESIS El fluido es incomprensible. La temperatura no varía. El

Más detalles

Capítulo 8 CAPÍTULO 8 MEDICIÓN, OPERACIÓN Y CONTROL. 8.1 Medición de los fluidos

Capítulo 8 CAPÍTULO 8 MEDICIÓN, OPERACIÓN Y CONTROL. 8.1 Medición de los fluidos CAPÍTULO 8 MEDICIÓN, OPERACIÓN Y CONTROL 8.1 Medición de los fluidos La medición de los fluidos juega un papel cada vez más importante en la industria, ya que la inexactitud en los datos puede representar

Más detalles

Objetivos específicos:

Objetivos específicos: Universidad Nacional Experimental del Tácira Departamento de Ingeniería Mecánica Núcleo de Termofluidos Asignatura: Laboratorio de Mecánica de Fluidos Código: 011 L Carrera: Ingeniería Mecánica Profesor:

Más detalles

Hidráulica Teórica Guía Nº1

Hidráulica Teórica Guía Nº1 Hidráulica Teórica Guía Nº1 PARTE I: CONCEPTOS 1.- Responda las siguientes preguntas: a) Derive la expresión de la corrección de caudal Q aplicable en el método de Cross para una malla que contiene una

Más detalles

GUIONES DE LAS PRÁCTICAS DEL LABORATORIO DE MECÁNICA DE FLUIDOS

GUIONES DE LAS PRÁCTICAS DEL LABORATORIO DE MECÁNICA DE FLUIDOS Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola Laboratorio de Mecánica de Fluidos GUIONES DE LAS PRÁCTICAS DEL LABORATORIO DE MECÁNICA DE

Más detalles

Laboratorio orio de Operaciones Unitarias I

Laboratorio orio de Operaciones Unitarias I Laboratorio orio de Operaciones Unitarias I 1 República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio

Más detalles

Ingeniería Petrolera PED-1019 2-3 5

Ingeniería Petrolera PED-1019 2-3 5 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: SATCA 1 Mecánica de Fluidos Ingeniería Petrolera PED-1019 2-3 5 2.- PRESENTACIÓN Caracterización de la asignatura. Ingenieros

Más detalles

PRÁCTICA 1 PARTE 1: CAPILARIDAD, VISCOSIDAD, TENSIÓN SUPERFICIAL PARTE 2: MEDIDA DE PRESIONES

PRÁCTICA 1 PARTE 1: CAPILARIDAD, VISCOSIDAD, TENSIÓN SUPERFICIAL PARTE 2: MEDIDA DE PRESIONES PRÁCTICA 1 PARTE 1: CAPILARIDAD, VISCOSIDAD, TENSIÓN SUPERFICIAL PARTE 2: MEDIDA DE PRESIONES 1 de 14 CAPILARIDAD OBJETIVO Comprender el fundamento de la capilaridad. Aplicar la fórmula de Jurin para calcular

Más detalles

Estructura del Laboratorio 1 Unidades Base y de Servicio. CAI. Sistema de Software de Enseñanza Asistida desde Computador (PC)

Estructura del Laboratorio 1 Unidades Base y de Servicio. CAI. Sistema de Software de Enseñanza Asistida desde Computador (PC) Equipamiento Didáctico Técnico (FME01) (FME03) (FME07) Laboratorio Integrado de Mecánica de Fluidos Básica Estructura del Laboratorio 1 Unidades Base y de Servicio LIFLUBA FME00 (FME17) (FME08) FME00/B

Más detalles

Ingeniería en Ciencias de la Tierra Explotación del petróleo Ingeniería Petrolera División Departamento Carrera(s) en que se imparte

Ingeniería en Ciencias de la Tierra Explotación del petróleo Ingeniería Petrolera División Departamento Carrera(s) en que se imparte UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO MECÁNICA DE FLUIDOS 0461 4 09 Asignatura Clave Semestre Créditos Ingeniería en Ciencias de la Tierra Explotación del petróleo

Más detalles

PROBLEMAS DE MECÁNICA DE FLUIDOS PROPUESTOS EN EXÁMENES

PROBLEMAS DE MECÁNICA DE FLUIDOS PROPUESTOS EN EXÁMENES DEPARTAMENTO DE INGENIERÍA NUCLEAR Y MECÁNICA DE FLUIDOS INGENIARITZA NUKLEARRA ETA JARIAKINEN MEKANIKA SAILA PROBLEMAS DE MECÁNICA DE FLUIDOS PROPUESTOS EN EXÁMENES CURSO 2013-2014 2 PROBLEMAS DE MECÁNICA

Más detalles

JUAN ZITNIK Manual de vuelo del PIPER PA-11 Aerodinámica AERODINAMICA

JUAN ZITNIK Manual de vuelo del PIPER PA-11 Aerodinámica AERODINAMICA Definición AERODINAMICA Es la rama de la mecánica de fluidos que se ocupa del movimiento del aire y otros fluidos gaseosos, y de las fuerzas que actúan sobre los cuerpos que se mueven en dichos fluidos.

Más detalles

TEMA II.6. Variación de la Presión con la Elevación. Dr. Juan Pablo Torres-Papaqui

TEMA II.6. Variación de la Presión con la Elevación. Dr. Juan Pablo Torres-Papaqui TEMA II.6 Variación de la Presión con la Elevación Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales

Más detalles

Equipo de Fricción en Tuberías con Banco Hidráulico (FME00) AFT

Equipo de Fricción en Tuberías con Banco Hidráulico (FME00) AFT Equipamiento Didáctico Técnico Equipo de Fricción en Tuberías con Banco Hidráulico (FME00) AFT Productos Gama de Productos Equipos 8.-Mecánica de Fluidos y Aerodinámica DIAGRAMA DEL PROCESO Y DISPOSICIÓN

Más detalles

Ejercicios resueltos de cinemática

Ejercicios resueltos de cinemática Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe

Más detalles

θ re Medias 34 ± 1 30.6 ± 0.9 Tabla 1: Resultados para los ángulos máximo y de reposo para la arena θ max

θ re Medias 34 ± 1 30.6 ± 0.9 Tabla 1: Resultados para los ángulos máximo y de reposo para la arena θ max Estudio y aplicación de medios granulares - Oscilador de Masa Variable L. Ferreyra (basilisco@hotmail.com) - J. Flores (jose_uba@yahoo.com) y G. Solovey (gsolovey@arnet.com.ar) Laboratorio 5, Departamento

Más detalles

Dinamica de Fluidos: Principio de Bernoulli. Aplicaciones

Dinamica de Fluidos: Principio de Bernoulli. Aplicaciones Dinamica de Fluidos: Principio de Bernoulli. Aplicaciones Cuando un fluido está en movimiento, el flujo se puede clasificar en dos tipos: a) Flujo estacionario o laminar si cada partícula de fluido sigue

Más detalles

EQUIPAMIENTO DIDACTICO

EQUIPAMIENTO DIDACTICO EQUIPAMIENTO DIDACTICO CATALOGO GENERAL MAR-2014 Somos una empresa ubicada en el País Vasco (Norte de España), dedicada al diseño, fabricación y distribución de equipos didácticos de laboratorio, destinados

Más detalles

Práctico de Física Térmica 1 ra Parte

Práctico de Física Térmica 1 ra Parte Enunciados Lista 0 Práctico de Física Térmica 1 ra Parte 2.8 * Un kilogramo de nitrógeno diatómico (N 2 con peso molecular de 28) se encuentra dentro de un depósito de 500 litros. Encuentre el volumen

Más detalles

CALCULOS HIDRÁULICOS. Master en Ingeniería y Gestión Medioambiental 2007/2008. Módulo: Aguas

CALCULOS HIDRÁULICOS. Master en Ingeniería y Gestión Medioambiental 2007/2008. Módulo: Aguas Módulo: Aguas CALCULOS HIDRÁULICOS AUTOR: Mª ASUNCIÓN GUTIÉRREZ L. : Quedan reservados todos los derechos. (Ley de Propiedad Intelectual del 17 de noviembre de 1987 y Reales Decretos). Documentación elaborada

Más detalles

Tema 8. Fórmulas empíricas para el cálculo de pérdidas de carga continuas en tuberías

Tema 8. Fórmulas empíricas para el cálculo de pérdidas de carga continuas en tuberías Tema 8. Fórmulas empíricas para el cálculo de pérdidas de carga continuas en tuberías 1. Fórmulas para el régimen turbulento liso. Fórmulas para el régimen turbulento en la zona de transición 3. Fórmulas

Más detalles

JUSTIFICACION. Los temas mencionados son básicos para el estudio de los fluidos en reposa (estática de los fluidos).

JUSTIFICACION. Los temas mencionados son básicos para el estudio de los fluidos en reposa (estática de los fluidos). Nombre de la asignatura: Mecánica de Fluidos I. Carrera : Ingeniería Mecánica Clave de la asignatura: MCB-9330 Clave local: Horas teoría horas practicas créditos: 4-0-8 2. - UBICACIÓN DE LA ASIGNATURA

Más detalles

CAPÍTULO SIETE. HIDROSTÁTICA E HIDRODINÁMICA

CAPÍTULO SIETE. HIDROSTÁTICA E HIDRODINÁMICA CAPÍTULO SIETE. HIDROSTÁTICA E HIDRODINÁMICA Los fluidos son sustancias que se pueden escurrir o fluir, mediante una aplicación apropiada de fuerzas. En términos generales podemos clasificar los fluidos

Más detalles

Esp. Duby Castellanos MEDICIÓN DE LA VARIABLE PRESIÓN. Esp. Duby Castellanos

Esp. Duby Castellanos MEDICIÓN DE LA VARIABLE PRESIÓN. Esp. Duby Castellanos 1 MEDICIÓN DE LA VARIABLE PRESIÓN 2 DEFINICIONES Presión: es la fuerza que un fluido ejerce perpendicularmente sobre la unidad de superficie. Las unidades más comunes para su medición son: Kg/cm 2, PSI

Más detalles

PROGRAMA DE CAPACITACIÓN AÑO 2012 ANALISIS, DIMENSIONAMIENTO E INGENIERIA DE OLEODUCTOS

PROGRAMA DE CAPACITACIÓN AÑO 2012 ANALISIS, DIMENSIONAMIENTO E INGENIERIA DE OLEODUCTOS PROGRAMA DE CAPACITACIÓN AÑO 2012 ANALISIS, DIMENSIONAMIENTO E INGENIERIA DE OLEODUCTOS ANALISIS, DIMENSIONAMIENTO E INGENIERIA DE OLEODUCTOS OBEJETIVO GENERAL Capacitar al asistente con los procesos asociados

Más detalles

= m V. recordemos que el volumen de una esfera es de V = 4 3 r3

= m V. recordemos que el volumen de una esfera es de V = 4 3 r3 Estatica de Fluidos Problema. Calcule la masa de una esfera sólida de hierro que tiene un diamétro de 3:00cm: Solución. La masa la calcularemos a partir del volumen de la esfera y la densidad del hierro,

Más detalles

Sistema de distribución del aire. Cálculo de conductos.

Sistema de distribución del aire. Cálculo de conductos. Sistema de distribución del aire. Cálculo de conductos. Objetivos: Que el alumno sea capaz de dimensionar una red de conductos. Se pretende que el alumno pueda identificar los diferentes elementos que

Más detalles

Mecánica de Fluidos Trabajo Práctico # 10 - Capa límite, Flujos desarrollados - Problemas Resueltos

Mecánica de Fluidos Trabajo Práctico # 10 - Capa límite, Flujos desarrollados - Problemas Resueltos Mecánica de Fluidos Trabajo Práctico # 10 - Capa límite, Flujos desarrollados - Como Proceder: Lea los contenidos de la parte Teórica correspondiente al Módulo 09 y 10, haga un resumen de conceptos y de

Más detalles

HIDRÁULICA Ingeniería en Acuicultura.

HIDRÁULICA Ingeniería en Acuicultura. HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica

Más detalles

EJERCICIOS PARA TERCER CERTAMEN MECÁNICA DE FLUIDOS

EJERCICIOS PARA TERCER CERTAMEN MECÁNICA DE FLUIDOS EJERCICIOS PR TERCER CERTMEN MECÁNIC DE FUIDOS. En el tubo en U de la figura, se ha llenado la rama de la derecha con mercurio y la de la izquierda con un líquido de densidad desconocida. os niveles definitivos

Más detalles

EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O.

EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O. EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O. La finalidad de esta colección de ejercicios resueltos consiste en que sepáis resolver las diferentes situaciones que se nos plantea en el problema. Para ello seguiremos

Más detalles

CONSERVACIÓN DE LA ENERGIA GENERADOR HIDRÁULICO

CONSERVACIÓN DE LA ENERGIA GENERADOR HIDRÁULICO CONSERVACIÓN DE LA ENERGIA GENERADOR HIDRÁULICO RESUMEN En este trabajo se presenta un generador hidráulico que se rige por el principio de conservación de la energía; debido a sus transformaciones que

Más detalles

DISEÑO Y CARACTERIZACION DE UN BANCO DE TOBERAS TIPO VENTURI EN REGIMEN CRITICO

DISEÑO Y CARACTERIZACION DE UN BANCO DE TOBERAS TIPO VENTURI EN REGIMEN CRITICO DISEÑO Y CARACTERIZACION DE UN BANCO DE TOBERAS TIPO VENTURI EN REGIMEN CRITICO Roberto Arias R., Juan C. Gervacio S. Centro Nacional de Metrología rarias@cenam.mx; jgervaci@cenam.mx; Resumen: Se describe

Más detalles

EL LAVADO DE LAS MAQUINAS DE ORDEÑA SAC

EL LAVADO DE LAS MAQUINAS DE ORDEÑA SAC EL LAVADO DE LAS MAQUINAS DE ORDEÑA SAC El sistema de lavado consiste de un lavado de porciones controladas. Durante el montaje de la línea de lavado, es importante seguir las indicaciones de los planos

Más detalles

Asignatura: MECÁNICA DE FLUIDOS

Asignatura: MECÁNICA DE FLUIDOS Asignatura: MECÁNICA DE FLUIDOS Titulación: I.T. MINAS (Recursos Energéticos, Combustibles y Explosivos) Curso completo: SEGUNDO http://www.upct.es/~euitc/it_minas/rec_ener/horarios/horarios2rece.htm Profesor

Más detalles

MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN

MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN ÍNDICE Parámetros fundamentales y operaciones básicas en aire acondicionado Condiciones de bienestar o confort Cálculo de la carga térmica de refrigeración

Más detalles

Dpto. Ingeniería Nuclear y Mecánica de Fluidos. Escuela Universitaria Politécnica Unibertsitate Eskola Politeknikoa Donostia- San Sebastián

Dpto. Ingeniería Nuclear y Mecánica de Fluidos. Escuela Universitaria Politécnica Unibertsitate Eskola Politeknikoa Donostia- San Sebastián PRÁCTICAS DE LABORATORIO MECANICA DE FLUIDOS Profesores: Gorka Alberro Eguilegor Javier Almandoz Berrondo Ruben Jimenez Redal Belén Mongelos Oquiñena Idoia Pellejero Salaberria Curso : 2011-12 Dpto. Ingeniería

Más detalles

EJERCICIO DIMENSIONADO INSTALACIONES DE AGUA EN VIVIENDA

EJERCICIO DIMENSIONADO INSTALACIONES DE AGUA EN VIVIENDA EJERCICIO DIMENSIONADO INSTALACIONES DE AGUA EN VIVIENDA Dimensionar las instalaciones de agua fría y caliente de una torre de 9 alturas y 4 manos por planta, que disponen de un baño con bañera 1,5 m,

Más detalles

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA.

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. Con unos costos de la energía en aumento y con unas limitaciones cada vez mayores a la emisión de gases de efecto invernadero, el diseño de equipos e instalaciones

Más detalles

MECANICA DE FLUIDOS PARA BACHILLERATO. Jorge Parra Vargas cod 20012135001 Jaime Niño Rocha cod 20012135023. Introducción

MECANICA DE FLUIDOS PARA BACHILLERATO. Jorge Parra Vargas cod 20012135001 Jaime Niño Rocha cod 20012135023. Introducción MECANICA DE FLUIDOS PARA BACHILLERATO Jorge Parra Vargas cod 20012135001 Jaime Niño Rocha cod 20012135023 Introducción Una tendencia en nuestro país es la de enseñar física en cursos de educación básica.

Más detalles

SECUENCIA DIDÁCTICA HIDRODINÁMICA

SECUENCIA DIDÁCTICA HIDRODINÁMICA SECUENCIA DIDÁCTICA HIDRODINÁMICA Área/espacio curricular Fundamentación y propósitos Ciencias Naturales / Física Ciclo Orientado La modificación de los procesos de enseñanza y de aprendizaje en relación

Más detalles

INTERCAMBIADORES DE CALOR

INTERCAMBIADORES DE CALOR 1 OBJETO: INTERCAMBIADORES DE CALOR Estudio del comportamiento de un cambiador de calor de carcasa y tubos. Determinación de su coeficiente global de transmisión de calor, DMLT, F, eficiencia, NUT, y pérdidas

Más detalles

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura. Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una

Más detalles

NÚCLEO 4 SISTEMA DE CONDUCCIÓN HIDRÁULICA 4.1 CARÁCTERÍSTICAS HIDRÁULICAS DEL SISTEMA

NÚCLEO 4 SISTEMA DE CONDUCCIÓN HIDRÁULICA 4.1 CARÁCTERÍSTICAS HIDRÁULICAS DEL SISTEMA NÚCLEO 4 SISTEMAS DE CONDUCCIÓN HIDRAÚLICA 4.1 CARÁCTERÍSTICAS HIDRÁULICAS DEL SISTEMA La conducción en un sistema de bombeo es uno de los elementos más importantes, ya que su función es precisamente formar

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles
الراتنج الحرف | Forrest Gump | Mario (2018)