Watch now! | Freizeit Kultur | Straßenatlanten

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000"

Transcripción

1 PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO Qué longitud debe tener un redondo de hierro (G = MPa), de 1 cm de diámetro para que pueda sufrir un ángulo de torsión de 90º entre las dos secciones extremas sin que la tensión tangencial máxima supere el valor de 92,5 MPa? Se construye un aparato de medida del que forma parte un muelle de barra giratoria, constituido por un alambre de diámetro d, como se indica en la figura. Para un momento torsor máximo de 0,02 N m, el ángulo de giro debe ser 180º. Calcular la longitud del alambre. Datos: G = 81 GPa τadm = 600 MPa Una barra de sección circular de diámetro D, empotrada - libre se encuentra sometida a un momento torsor tal como se indica en la figura. Sobre la superficie lateral de la barra se ha adherido una roseta con tres galgas extensométricas, cuya galga central es paralela al eje de la barra. Siendo G el módulo de elasticidad transversal de la barra, determinar en función de M, D y G las lecturas de las tres galgas Se consideran dos barras prismáticas del mismo material y de la misma longitud. Una tiene sección recta tubular de radios R 1 y R 2 entre los que existe la relación R 2 = 1,2 R 1 ; la otra es de sección circular maciza de radio R. Las secciones rectas de ambas barras, que están sometidas a torsión pura, tienen el mismo área. Calcular la relación entre los pares torsores aplicados en las secciones extremas de las dos barras si el ángulo de torsión por unidad de longitud en ellas es el mismo

2 A un eje de acero de 3 cm de radio se han fijado tres poleas, de radios r 1 = 15 cm, r 2 = 30 cm, r 3 = 20 cm, en cuyas correas actúan las fuerzas indicadas en la figura. El eje gira a 500 r.p.m. alrededor de los gorrones A y B de rozamiento despreciable. Se pide: 1º.- Calcular el valor de la fuerza F que transmite la correa en la polea de radio r 2. 2º.- Determinar en CV la potencia transmitida por la polea de radio r 2. 3º.- Calcular en grados el ángulo relativo girado entre las dos secciones extremas del eje. Dato: G = 85 GPa Sobre un eje de radio R = 6 cm actúan los momentos (en kn m) indicados en la figura. Calcular en grados el giro relativo entre las dos secciones medias de los tramos AB y CD. Dato: G = 28 GPa El eje del árbol de transmisión de la figura es macizo y está constituido por acero de tensión tangencial admisible τ adm = 65 MPa. Hallar el valor mínimo (en un número entero de mm) de los diámetros d AB, d BC y d CD

3 El embrague de discos indicado en la figura transmite un momento torsor M T. La presión entre los dos discos, que son circulares de diámetro d, está ejercida por una fuerza normal P que se distribuye uniformemente sobre los platos del embrague y que el coeficiente de rozamiento entre ellos es µ, calcular el máximo momento M T transmitido por el embrague sin que se produzca deslizamiento Calcular, en julios, el potencial interno de una barra prismática de longitud L = 180 cm, sección recta circular de radio r = 50 mm sometida a un momento torsor tal que la tensión tangencial máxima es τ adm = 50 MPa. Datos: E = 200 GN/m 2 µ = 0, Tres barras de sección circular idénticas, de rigidez a la torsión GI o y longitud L, están empotradas en uno de sus extremos teniendo libre el otro extremo. Calcular la energía de deformación almacenada en cada una de las barras cuando se las somete a los momentos indicados en las figuras Una barra de acero (τ adm = 100 MPa) de sección circular, de longitud 4L, está empotrada en sus extremos. A una distancia L del extremo izquierdo está aplicado un par torsor M, y a una distancia L del extremo derecho está aplicado un par torsor 2M de sentido contrario al anterior. Dimensionar el diámetro de la barra para M = N m

4 El tubo de la figura se encuentra sometido a torsión pura. Determinar el error relativo (en tanto por ciento), que se comete en el cálculo de la tensión máxima de cortadura al emplear la teoría de perfiles delgados (T.P.D.) en lugar de la teoría elemental de la torsión (T.E.). 10 mm M T 11 mm Un perfil delgado de aluminio de longitud L = 2 m cuya sección recta es la indicada en la figura está sometido a un momento torsor M T = 2 kn m. Si el módulo de elasticidad es G = 28 GPa, calcular en MPa la tensión máxima de cortadura así como el giro relativo entre las secciones extremas debido a la torsión Dimensionar la sección recta de un tubo de pequeño espesor e = 3 mm, siendo la línea media de dicha sección una elipse cuya relación de las longitudes de los semiejes es a/b = 4/3, para que sea capaz de soportar un momento torsor M T = 2000 N m. La tensión de cortadura admisible del tubo es τ adm = 30 MPa Un tubo de pared delgada tiene la forma indicada en la figura y un espesor uniforme e = 2,5 mm. Calcular el momento torsor que producirá una tensión de cortadura τ = 50 MN/m

5 Se considera un tubo de paredes delgadas de sección rectangular, de las dimensiones y espesores indicados en la figura. Si el módulo de elasticidad transversal es G = 39 GPa, se pide: 1º.- Calcular la tensión tangencial en los puntos de la sección recta cuando se somete el tubo a torsión pura de momento torsor M T = 5 kn m. 2º.- Determinar el momento torsor que produce una tensión tangencial máxima de 45 MPa Calcular el máximo valor modular de los momentos torsores aplicados al árbol indicado en la figura, cuyos extremos están empotrados. Datos: D = 10 cm τadm = 80 MPa Dibujar, acotándolo, el diagrama de momentos torsores del árbol biempotrado indicado en la figura. Datos: D= 12 cm d= 8 cm a = 50 cm M = 1500 N m

6 La barra circular 1 y el tubo cuadrado de pared delgada 2, ambos del mismo material, se encuentran unidos en sus extremos mediante piezas indeformables. Se pide determinar el ángulo de giro del conjunto cuando se aplica un momento M T. Dato: G Un eje AB de diámetro D rígidamente empotrado en sus extremos está sometido a un momento torsor M aplicado en su sección media, como se indica en la figura. La parte derecha del eje es hueca, de diámetro interior d. Calcular el ángulo θ que habría que girar el empotramiento B para que se anulen las tensiones en el empotramiento A Una barra de longitud L = 5 m está formada por dos perfiles UPN-240 de tensión de cortadura admisible τadm = 1000 kp/cm 2, soldados por las alas mediante cordones de soldadura ininterrumpidos (ver figura adjunta). La barra está empotrada en sus extremos A y B siendo este último perfecto y el primero de tipo elástico, oponiéndose al giro de la sección unida al empotramiento en magnitud proporcional (constante de proporcionalidad k = M/θ = 10 5 kp m) al par de empotramiento. (Tómese G = kp/cm 2 ). La barra presenta un par torsor, M, aplicado en una sección que dista a = 2 m del empotramiento izquierdo B. Se pide: 1º.- Valor máximo de M. 2º.- Giro máximo experimentado por todas las secciones de la barra. 3º.- Incidencia de los resultados de los apartados 1º y 2º si solo se efectúa uno de los cordones de soldadura

7 Un resorte de torsión está constituido por dos cilindros del mismo material unidos por su extremo, tal como se indica en la figura. El primer cilindro es macizo, de radio R i y longitud L i, y se aloja sin holgura ni rozamiento en el interior del segundo, que es hueco de radio exterior R e y longitud L e. Se pide determinar: 1º.- Rigidez del resorte. 2º.- Relación que debe existir entre R e y R i para que los dos cilindros trabajen con la misma tensión máxima Un eje AE de sección circular de diámetro d, longitud 5a y módulo G está sujeto a un marco en forma de U. El extremo A del eje está soldado a un ala de del soporte, mientras que por el otro el eje se apoya sobre un dispositivo que permite el giro sin fricción. El extremo E del eje está soldado a una barra rígida de longitud b. En el punto C del eje hay una varilla soldada. Cuando el eje está descargado, la varilla y la barra rígida se encuentran en el mismo plano horizontal. Al suspender un peso P en el extremo de la barra rígida aparecen unos momentos torsores en las poleas B y D tales que la varilla y la barra rígida permanecen horizontales. Para los valores numéricos a = 15 cm b= 40 cm P = 100 N G = MPa τ adm = 100 MPa Se pide: 1º.- Momentos torsores en B y D. 2º.- Diagrama acotado de momentos torsores en el eje AE 3º.- Valor mínimo en mm del diámetro d del eje. 4º.- Para el diámetro d hallado, giros de las poleas B y D

8 Dos ejes de acero (G = 77 GPa) de sección circular están conectados mediante ruedas dentadas tal como se indica en la figura. El eje superior está empotrado en D, mientras que el resto de apoyos permiten el giro sin rozamiento del eje. Suponiendo que el momento torsor aplicado en A es M T = 600 N m. Se pide: 1º.- Diagramas de momentos torsores en ambos ejes. 2º.- Ángulo girado por el extremo A

Tema 1: ESFUERZOS Y DEFORMACIONES

Tema 1: ESFUERZOS Y DEFORMACIONES Escuela Universitaria de Ingeniería Técnica grícola de Ciudad Real Tema 1: ESFUERZOS Y DEFORMCIONES Tipos de cargas. Tensiones: Clases. Tensiones reales, admisibles y coeficientes de seguridad. Elasticidad:

Más detalles

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

Examen de TECNOLOGIA DE MAQUINAS Septiembre 97 Nombre...

Examen de TECNOLOGIA DE MAQUINAS Septiembre 97 Nombre... Examen de TECNOLOGIA DE MAQUINAS Septiembre 97 Nombre... El eje de la figura recibe la potencia procedente del motor a través del engranaje cilíndrico recto que lleva montado, y se acopla a la carga por

Más detalles

UD 1: LOS MATERIALES Y SUS PROPIEDADES PROBLEMAS

UD 1: LOS MATERIALES Y SUS PROPIEDADES PROBLEMAS UD 1: LOS MATERIALES Y SUS PROPIEDADES PROBLEMAS Problemas de ensayo de Tracción 1.- 2.- 3.- Una probeta normalizada de 13.8 mm de diámetro y 100mm de distancia entre puntos, es sometida a un ensayo de

Más detalles

Resistencia de Materiales. Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0. Capítulo 7.

Resistencia de Materiales. Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0. Capítulo 7. Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 7. TORSIÓN 7.1 TORSIÓN PURA DE UN CILINDRO CIRCULAR Consideramos aquí únicamente, el caso de una barra

Más detalles

CTM Tema 5 Propiedades Mecánicas PROBLEMAS BÁSICOS

CTM Tema 5 Propiedades Mecánicas PROBLEMAS BÁSICOS TRACCIÓN 1) Una probeta cilíndrica de una aleación de titanio de 12 mm de diámetro y 10 cm de longitud experimenta un alargamiento de 0.4 mm cuando actúa sobre ella una carga a tracción de 52 kn. Suponiendo

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES II GRUPOS M1 y T1 CURSO 2011-12

PROBLEMAS DE RESISTENCIA DE MATERIALES II GRUPOS M1 y T1 CURSO 2011-12 PROBLEMAS DE RESISTENCIA DE MATERIALES II GRUPOS M1 y T1 CURSO 2011-12 1.1.- Determinar la relación mínima entre la longitud y el diámetro de una barra recta de sección circular, para que al girar relativamente

Más detalles

Examen de TECNOLOGIA DE MAQUINAS Febrero 95 Nombre...

Examen de TECNOLOGIA DE MAQUINAS Febrero 95 Nombre... Examen de TECNOLOGIA DE MAQUINAS Febrero 95 Nombre... Sobre la barra de sección circular de la figura, fabricada en acero AISI 1040 estirado en frío, se desplaza una carga puntual de 80 Kg, moviéndose

Más detalles

SIMBOLOGÍA. A área usada para el cálculo de A e, en cm 2. (2.1.). A ef área efectiva del tubo, en cm 2. (4.2.).

SIMBOLOGÍA. A área usada para el cálculo de A e, en cm 2. (2.1.). A ef área efectiva del tubo, en cm 2. (4.2.). SIMBOLOGÍA El número que figura entre paréntesis al final de la definición de un símbolo se refiere al número de artículo de este Reglamento donde el símbolo es definido o utilizado por primera vez. A

Más detalles

32. Se conecta un condensador de 10 µf y otro de 20 µf en paralelo y se aplica al conjunto

32. Se conecta un condensador de 10 µf y otro de 20 µf en paralelo y se aplica al conjunto 2. Conductores y dieléctricos. Capacidad, condensadores. Energía electrostática. 24. Cargamos un condensador de 100 pf hasta que adquiere una ddp de 50 V. En ese momento desconectamos la batería. Conectamos

Más detalles

5.- Determina la densidad del aluminio, sabiendo que cristaliza en el sistema FCC, que su masa atómica es 27 y que su radio atómico es 1,43A10-8 cm

5.- Determina la densidad del aluminio, sabiendo que cristaliza en el sistema FCC, que su masa atómica es 27 y que su radio atómico es 1,43A10-8 cm ESTRUCTURA Y PROPIEDADES DE LOS MATERIALES 1.- Calcula la constante reticular (arista de la celda unitaria, a) de un material cuyos átomos tienen un radio atómico de 0,127 nm que cristaliza en el sistema

Más detalles

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO Parte I: MOMENTOS DE INERCIA Objetivo: Determinar experimentalmente el momento de inercia de un disco respecto a su centro de gravedad y respecto a distintos

Más detalles

Examen de MECANISMOS Junio 97 Nombre...

Examen de MECANISMOS Junio 97 Nombre... Examen de MECANISMOS Junio 97 Nombre... Se pretende conectar dos ejes paralelos que distan 505 mm mediante dos engranajes, de manera que la relación de velocidades sea 0.0625. El número máximo de dientes

Más detalles

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO C9. 1 Aceleramos iones de los isótopos C-12, C-13 y C-14 con una d.d.p. de 100 kv y los hacemos llegar a un espectrógrafo de masas perpendicularmente a la

Más detalles

ALUMNO: CURSO: 2 MECANICA ASIGNATURA: ESTABILIDAD I FECHA:

ALUMNO: CURSO: 2 MECANICA ASIGNATURA: ESTABILIDAD I FECHA: 3.1.- La viga AD soporta las dos cargas de 40 lb que se muestran en la figura. La viga se sostiene mediante un apoyo fijo en D y por medio del cable BE, el cual está conectado al contrapeso W. Determine

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... La figura muestra una leva de disco con seguidor de traslación, radial, de rodillo. La leva es un círculo de radio R=20 mm, articulado al elemento fijo

Más detalles

Tema 4 : TRACCIÓN - COMPRESIÓN

Tema 4 : TRACCIÓN - COMPRESIÓN Tema 4 : TRCCIÓN - COMPRESIÓN F σ G O σ σ z N = F σ σ σ y Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 4.1.-Calcular el incremento de longitud que tendrá un pilar de hormigón

Más detalles

(Sol. 5 kn m) (Sol. Ql)

(Sol. 5 kn m) (Sol. Ql) Serie de ejercicios de Estática FUERZA CORTANTE Y MOMENTO FLEXIONANTE 1. La viga de la figura tiene un peso despreciable como las del resto de esta serie y soporta la carga de 96 kg. Dibuje los diagramas

Más detalles

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO SOLUCIONES PROLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO. Dos conductores rectilíneos, paralelos mu largos transportan corrientes de sentidos contrarios e iguales a,5 A. Los conductores son perpendiculares

Más detalles

CIDEAD. TECNOLOGÍA INDUSTRIAL I. MECANISMOS. PROBLEMAS 1.

CIDEAD. TECNOLOGÍA INDUSTRIAL I. MECANISMOS. PROBLEMAS 1. 1. Hallar la fuerza que es necesario aplicar para vencer una resistencia de 1000 Kg., utilizando: a. Una polea móvil. b. Un polipasto potencial de tres poleas móviles. c. Un polipasto exponencial de tres

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

Diseño Mecánico (Engranajes) Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D.

Diseño Mecánico (Engranajes) Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D. Diseño Mecánico (Engranajes) Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D. Engranajes 1. Tipos de engranaje 2. Nomenclatura 3. Acción conjugada 4. Propiedades de la involuta 5. Fundamentos 6. Relación

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

Muelles y resortes. Índice. Tema 8º: Tema DI8 - Muelles y resortes. Ingeniería Gráfica y Topografía. Expresión Gráfica y DAO 1

Muelles y resortes. Índice. Tema 8º: Tema DI8 - Muelles y resortes. Ingeniería Gráfica y Topografía. Expresión Gráfica y DAO 1 Tema 8º: Muelles y resortes Ingeniería Gráfica y Topografía M.D.M.G./11 Índice - Generalidades. - Clasificación. - Resortes helicoidales de compresión. - Resortes helicoidales de tracción. - Resortes cónicos

Más detalles

GUIA Nº5: Cuerpo Rígido

GUIA Nº5: Cuerpo Rígido GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m.

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m. 1 1. De los extremos de una cuerda que pasa por la garganta de una polea sin rozamiento y de masa despreciable, cuelgan dos masas iguales de 200 gramos cada una. Hallar la masa que habrá de añadirse a

Más detalles

Estática. Equilibrio de una Partícula

Estática. Equilibrio de una Partícula Estática 3 Equilibrio de una Partícula Objetivos Concepto de diagrama de cuerpo libre para una partícula. Solución de problemas de equilibrio de una partícula usando las ecuaciones de equilibrio. Índice

Más detalles

Tema II: Elasticidad

Tema II: Elasticidad TEMA II Elasticidad LECCIÓN 2 Ley de Hooke 1 2.1 TENSIÓN Comparación de la resistencia mecánica a tracción de dos materiales distintos: Cuál de los dos materiales es más resistente? 2 Tensión ingenieril

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

TALLER DE TRABAJO Y ENERGÍA

TALLER DE TRABAJO Y ENERGÍA TALLER DE TRABAJO Y ENERGÍA EJERCICIOS DE TRABAJO 1. Un mecánico empuja un auto de 2500 kg desde el reposo hasta alcanzar una rapidez v, realizando 5000 J de trabajo en el proceso. Durante este tiempo,

Más detalles

TECNOLOGÍAS Versión impresa MÁQUINAS: TRANSMISIÓN Y TRANS- FORMACIÓN DEL MOVIMIENTO

TECNOLOGÍAS Versión impresa MÁQUINAS: TRANSMISIÓN Y TRANS- FORMACIÓN DEL MOVIMIENTO TECNOLOGÍAS Versión impresa MÁQUINAS: TRANSMISIÓN Y TRANS- FORMACIÓN DEL MOVIMIENTO Introducción Una máquina es un aparato capaz de transformar energía en trabajo útil. Desde la escoba hasta la lavadora,

Más detalles

Diseño de Elementos I

Diseño de Elementos I Diseño de Elementos I Objetivo General Estudiar las cargas y sus efectos sobre elementos de máquinas, a través de modelos matemáticos, las ciencias de los materiales y las ciencias mecánicas aplicadas

Más detalles

EJERCICIOS RECUPERACIÓN TECNOLOGÍA INDUSTRIAL I- 2ª PARTE MECANISMOS

EJERCICIOS RECUPERACIÓN TECNOLOGÍA INDUSTRIAL I- 2ª PARTE MECANISMOS EJERCICIOS RECUPERACIÓN TECNOLOGÍA INDUSTRIAL I- 2ª PARTE MECANISMOS MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DEL MOVIMIENTO 1.Una polea de 50 mm de diámetro acoplada al árbol motor gira a 1500 rpm.

Más detalles

GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL

GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL 1.- Un helicóptero contra incendios transporta un recipiente para agua de 620kg en el extremo de un cable de 20m de largo, al volar de regreso de un incendio

Más detalles

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS

Más detalles

Guía N 4: Campo Magnético, Ley de Ampere y Faraday e Inductancia

Guía N 4: Campo Magnético, Ley de Ampere y Faraday e Inductancia Física II Electromagnetismo-Física B C/014 Guía N 4: Problema 1. Un electrón se mueve en un campo magnético B con una velocidad: experimenta una fuerza de 5 5 v (4 10 i 7.1 10 j) [ m / s] F (.7 10 13i

Más detalles

La fem inducida es F 0 0 0,251

La fem inducida es F 0 0 0,251 Campo Magnético 01. El flujo magnético que atraviesa una espira es t -t en el intervalo [0, ]. Representa el flujo y la fem inducida en función del tiempo, determinando el instante en que alcanzan sus

Más detalles

Grado en Química. Física General I DEPARTAMENTO DE FÍSICA FACULTAD DE CIENCIAS EXPERIMENTALES. Mecánica del sólido rígido. UNIVERSIDAD DE JAÉN

Grado en Química. Física General I DEPARTAMENTO DE FÍSICA FACULTAD DE CIENCIAS EXPERIMENTALES. Mecánica del sólido rígido. UNIVERSIDAD DE JAÉN Grado en Química DEPARTAMENTO DE FÍSICA FACULTAD DE CIENCIAS EXPERIMENTALES UNIVERSIDAD DE JAÉN Física General I Mecánica del sólido rígido. 1.- Dos puntos se encuentran sobre un disco que gira, en torno

Más detalles

ACTIVIDADES DE MECANISMOS

ACTIVIDADES DE MECANISMOS ACTIVIDADES DE MECANISMOS 1. Calcular la velocidad de giro de una polea de 40mm de diámetro si el arrastrada por otra de 120mm de diámetro, que gira a 300 rpm. Calcula también la relación de transmisión

Más detalles

XIX OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1. Nombre y Apellido:... C.I.:...

XIX OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1. Nombre y Apellido:... C.I.:... TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1 Nombre y Apellido:..................................... C.I.:.................. Grado:......... Sección:........ Puntaje:........... Los dibujos

Más detalles

TECNOLOGÍA DE MATERIALES TEMA 6- Métodos de procesado. Extrusión PROBLEMAS.- HOJA 1

TECNOLOGÍA DE MATERIALES TEMA 6- Métodos de procesado. Extrusión PROBLEMAS.- HOJA 1 TEMA 6- Métodos de procesado. Extrusión PROBLEMAS.- HOJA 1 P1.- Para fabricar un perfil rectangular de Nylon de sección transversal: 20 mm x 5 mm, se utiliza un tornillo extrusor simple. La velocidad de

Más detalles

4. Campo magnético. Fuerza de Lorentz. Teorema de Ampère. Inducción electromagnética. Corrientes de Foucault. Energía en un campo magnético.

4. Campo magnético. Fuerza de Lorentz. Teorema de Ampère. Inducción electromagnética. Corrientes de Foucault. Energía en un campo magnético. 4. Campo magnético. Fuerza de Lorentz. Teorema de Ampère. Inducción electromagnética. Corrientes de Foucault. Energía en un campo magnético. 64. Una sola espira circular de radio 8,5 cm ha de producir

Más detalles

SAN JUAN DE AZNALFARACHE (SEVILLA) PROBLEMAS DE MECANISMOS

SAN JUAN DE AZNALFARACHE (SEVILLA) PROBLEMAS DE MECANISMOS IES MTEO LEMÁN SN JUN DE ZNLFRCHE (SEVILL) PROBLEMS DE MECNISMOS º ESO MOTOR D 4 5 6 7 B C P PEDRO J. CSTEL GIL-TORESNO DEPRTMENTO DE TECNOLOGÍ PROBLEMS DE MECNISMOS Calcula la fuerza F y el desplazamiento

Más detalles

I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES

I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES 1.- Un conductor rectilíneo indefinido transporta una corriente de 10 A en el sentido positivo del eje Z. Un protón que se mueve a 2 105 m/s, se encuentra a 50

Más detalles

1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s?

1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s? 1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s? 2. Determina la relación de transmisión entre dos árboles y la velocidad del segundo si están unidos mediante una transmisión

Más detalles

Al representar estos datos obtenemos una curva:

Al representar estos datos obtenemos una curva: Pág. 1 18 Cuando de una goma de 10 cm se cuelgan pesos de 1, 2, 3, 4 y 5, esta se estira hasta 15, 21, 28, 36 y 45 cm, respectivamente. Representa la gráfica F-Dl y explica si la goma serviría para hacer

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

TRABAJO DE ENTRADA= TRABAJO ÚTIL DE SALIDA + TRABAJO NECESARIO PARA VENCER LA FRICCIÓN

TRABAJO DE ENTRADA= TRABAJO ÚTIL DE SALIDA + TRABAJO NECESARIO PARA VENCER LA FRICCIÓN UNA MÁQUINA: es cualquier dispositivo con el cual se puede cambiar la magnitud, la dirección o el método de aplicación de una fuerza para obtener algún provecho. Como ejemplos de máquinas simples tenemos

Más detalles

1) La relación de transmisión en una articulación o junta cardan siempre es: a) 2 b) 1 c) Depende del número de revoluciones d) 0,5

1) La relación de transmisión en una articulación o junta cardan siempre es: a) 2 b) 1 c) Depende del número de revoluciones d) 0,5 Tecnología Industrial I Rodear la respuesta correcta: Sistemas mecánicos Ejercicios Repaso Curso 2009/10 1) La relación de transmisión en una articulación o junta cardan siempre es: a) 2 b) 1 c) Depende

Más detalles

TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA

TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA 1. Un conductor esférico de radio a y carga Q es concéntrico con un cascaron esférico más grande de radio b y carga Q, como se muestra en la figura. Encuentre

Más detalles

GUIA DE ESTUDIO TEMA: DINAMICA

GUIA DE ESTUDIO TEMA: DINAMICA GUIA DE ESTUDIO TEMA: DINAMICA A. PREGUNTAS DE TIPO FALSO O VERDADERO A continuación se presentan una serie de proposiciones que pueden ser verdaderas o falsas. En el paréntesis de la izquierda escriba

Más detalles

COMPOSICION DE FUERZAS

COMPOSICION DE FUERZAS FUERZAS La fuerza es una magnitud vectorial que modifica la condición inicial de un cuerpo o sistema, variando su estado de reposo, aumentando ó disminuyendo su velocidad y/o variando su dirección. SISTEMAS

Más detalles

10/03/2013 CAPÍTULO 13 - ELASTICIDAD. Capítulo 13. Elasticidad OBJETIVOS ING ARNALDO ANGULO ASCAMA

10/03/2013 CAPÍTULO 13 - ELASTICIDAD. Capítulo 13. Elasticidad OBJETIVOS ING ARNALDO ANGULO ASCAMA CPÍTUO 13 - ESTICIDD Presentación PowerPoint de Paul E. Tippens, Profesor de ísica Southern Polytechnic State University PRESENTCION CTUIZD POR: ING RNDO NGUO SCM 013 Capítulo 13. Elasticidad Photo ol.

Más detalles

Cada acople esta diseñado para un tipo de movimiento y esta dado para una determinada potencia y tipo de desalineamiento. Se especifican por:

Cada acople esta diseñado para un tipo de movimiento y esta dado para una determinada potencia y tipo de desalineamiento. Se especifican por: ACOPLES y JUNTAS (Junta Cardánica) Acople: Dispositivo ó elemento para unir dos ejes en sus extremos, con el objeto de transmitir (potencia ó velocidad). Cuando ocurre una desalineación, las piezas del

Más detalles

DILATACIÓN PREGUNTAS PROBLEMAS

DILATACIÓN PREGUNTAS PROBLEMAS DILATACIÓN 1. Qué es la temperatura? PREGUNTAS PROBLEMAS 1. Dos barras idénticas de fierro (α = 12 x 10-6 /Cº) de 1m de longitud, fijas en uno de sus extremos se encuentran a una temperatura de 20ºC si

Más detalles

FISICA II PARA INGENIEROS

FISICA II PARA INGENIEROS FISICA II PARA INGENIEROS INTRODUCCION INGENIERIA La Ingeniería es el conjunto de conocimientos y técnicas científicas aplicadas a la creación, perfeccionamiento e implementación de estructuras (tanto

Más detalles

GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES

GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES Área de EET Página 1 de 7 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual

Más detalles

1. Calcula el valor de la Fuerza (F) que será necesaria para vencer la resistencia R. Qué tipo de palanca es?

1. Calcula el valor de la Fuerza (F) que será necesaria para vencer la resistencia R. Qué tipo de palanca es? EJERCICIOS MECANISMOS 3º ESO 1. Calcula el valor de la Fuerza (F) que será necesaria para vencer la resistencia R. Qué tipo de palanca es? 2. Calcula el valor de la Fuerza (F) que será necesaria para vencer

Más detalles

3º ESO TECNOLOGIAS MECANISMOS

3º ESO TECNOLOGIAS MECANISMOS 3º ESO TECNOLOGIAS MECANISMOS TEORIA DE MECANISMOS SIMPLES CON PALANCAS... 1 EJERCICIOS DE PALANCAS...3 TEORIA DE MECANISMOS DE TRANSMISIÓN LINEAL...6 TEORIA DE MECANISMOS DE TRANSMISIÓN CIRCULAR...6 TEORIA

Más detalles

Fuerzas PROBLEMAS DE FÍSICA DE LOS PROCESOS BIOLÓGICOS RELACIÓN 2. Aula Integral de Física de los Procesos Biológicos

Fuerzas PROBLEMAS DE FÍSICA DE LOS PROCESOS BIOLÓGICOS RELACIÓN 2. Aula Integral de Física de los Procesos Biológicos Fuerzas 1. Al igual que las demás fuerzas, las fuerzas gravitatorias se suman vectorialmente. Considerar un cohete que viaja de la Tierra a la Luna a lo largo de una línea recta que une sus centros. (a)

Más detalles

Resistencia de los Materiales

Resistencia de los Materiales Resistencia de los Materiales Clase 4: Torsión y Transmisión de Potencia Dr.Ing. Luis Pérez Pozo luis.perez@usm.cl Pontificia Universidad Católica de Valparaíso Escuela de Ingeniería Industrial Primer

Más detalles

Última modificación: 1 de agosto de 2010. www.coimbraweb.com

Última modificación: 1 de agosto de 2010. www.coimbraweb.com PROPAGACIÓN EN GUÍA DE ONDAS Contenido 1.- Introducción. 2. - Guía de ondas. 3.- Inyección de potencia. 4.- Modos de propagación. 5.- Impedancia característica. 6.- Radiación en guías de ondas. Objetivo.-

Más detalles

APUNTES DE MECANISMOS E.S.O.

APUNTES DE MECANISMOS E.S.O. APUNTES DE MECANISMOS E.S.O. DEPARTAMENTO DE TECNOLOGÍA 1 INTRODUCCIÓN MECANISMOS Si observamos a nuestro alrededor, observaremos que estamos rodeados de objetos que se mueven o tienen capacidad de movimiento.

Más detalles

DINÁMICA EJERCIOS DE LEYES DE NEWTON

DINÁMICA EJERCIOS DE LEYES DE NEWTON CUARTO TALLER DE REPASO 015-01 DINÁMICA EJERCIOS DE LEYES DE NEWTON 1. En C se amarran dos cables y se cargan como se muestra en la figura. Si se sabe que α=0, determine la tensión en los cables AC y BC.

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f 1) Se utiliza una barra de acero de sección rectangular para transmitir cuatro cargas axiales, según se indica en la figura.

Más detalles

MECÁNICA II CURSO 2004/05

MECÁNICA II CURSO 2004/05 1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

Héctor Soto Rodríguez. Centro Regional de Desarrollo en Ingeniería Civil Morelia, Michoacán, México

Héctor Soto Rodríguez. Centro Regional de Desarrollo en Ingeniería Civil Morelia, Michoacán, México Héctor Soto Rodríguez Centro Regional de Desarrollo en Ingeniería Civil Morelia, Michoacán, México MIEMBROS EN COMPRESIÓN N MC Definición Usos Secciones transversales típicas Tipos de columnas Pandeo por

Más detalles

Diseño Mecánico (Tornillos) Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D.

Diseño Mecánico (Tornillos) Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D. Diseño Mecánico (Tornillos) Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D. Tornillos 1. Normas y definiciones de roscas Mecánica de los tornillos de potencia Sujetadores roscados 2. Uniones: rigidez del

Más detalles

11 Cuerpos geométricos

11 Cuerpos geométricos 89485 _ 0369-0418.qxd 1/9/07 15:06 Página 369 Cuerpos geométricos INTRODUCCIÓN Los poliedros, sus elementos y tipos ya son conocidos por los alumnos del curso anterior. Descubrimos y reconocemos de nuevo

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

4.- Cómo clasificarías las fuerzas teniendo en cuenta la interacción de los cuerpos?

4.- Cómo clasificarías las fuerzas teniendo en cuenta la interacción de los cuerpos? 1.- Qué es una fuerza? 2.- Cómo se identifican las fuerzas? 3.- Cómo pueden interaccionarse los cuerpos? 4.- Cómo clasificarías las fuerzas teniendo en cuenta la interacción de los cuerpos? 5.- Qué entiendes

Más detalles

EJES. Proyectos de Ingeniería Mecánica Ing. José Carlos López Arenales

EJES. Proyectos de Ingeniería Mecánica Ing. José Carlos López Arenales EJES Proyectos de Ingeniería Mecánica Ing. José Carlos López Arenales Ejes Elementos de máquinas en donde se montan partes giratorias de las máquinas. Siendo los verdaderos ejes geométricos de las partes

Más detalles

4.- En relación con los ensayos de materiales, responda a las siguientes cuestiones:

4.- En relación con los ensayos de materiales, responda a las siguientes cuestiones: 1.- En un ensayo Charpy, la maza de 25 kg ha caído desde una altura de 1 m y, después de romper la probeta de 80 mm2 de sección, se ha elevado hasta una altura de 40 cm. Calcule: a) La energía empleada

Más detalles

Elasticidad. Bogotá D.C., 10 de marzo de 2014. *d.villota@javeriana.edu.co, *mara.salgado90@gmail.com, *aguirrek@javeriana.edu.co.

Elasticidad. Bogotá D.C., 10 de marzo de 2014. *d.villota@javeriana.edu.co, *mara.salgado90@gmail.com, *aguirrek@javeriana.edu.co. Elasticidad Mara Salgado 1*, Diego Villota Erazo 1*, Katherine Aguirre Guataqui 1*. Bogotá D.C., 10 de marzo de 2014 Departamento de Matemáticas, Laboratorio de Física Biomecánica, pontificia Universidad

Más detalles

PROBLEMAS DE INDUCCIÓN MAGNÉTICA

PROBLEMAS DE INDUCCIÓN MAGNÉTICA PROBLEMAS DE INDUCCIÓN MAGNÉTICA 1.- Una varilla conductora, de 20 cm de longitud se desliza paralelamente a sí misma con una velocidad de 0,4 m/s, sobre un conductor en forma de U y de 8 Ω de resistencia.el

Más detalles

Movimiento Circular Movimiento Armónico

Movimiento Circular Movimiento Armónico REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: gxâw á atätá 4to Año GUIA # 9 /10 PARTE ( I ) Movimiento

Más detalles

CAPITULO V CÁLCULOS MECÁNICOS. Se debe diseñar un eje que transmite una velocidad de giro máxima de 1725 rpm y

CAPITULO V CÁLCULOS MECÁNICOS. Se debe diseñar un eje que transmite una velocidad de giro máxima de 1725 rpm y 33 CAPITULO V CÁLCULOS MECÁNICOS 5.1 Cálculos mecánicos de diseño para la flecha Se debe diseñar un eje que transmite una velocidad de giro máxima de 175 rpm y esta conectada a un motor de _ HP marca MERCADAL

Más detalles

Diseño de una transmisión mecánica continuamente variable Pág. 45. ANEXO D: Cálculos

Diseño de una transmisión mecánica continuamente variable Pág. 45. ANEXO D: Cálculos Diseño de una transmisión mecánica continuamente variable Pág. 45 ANEXO D: Cálculos Pág. 46 Diseño de una transmisión mecánica continuamente variable Diseño de una transmisión mecánica continuamente variable

Más detalles

4. TRANSMISIÓN DE MOVIMIENTO

4. TRANSMISIÓN DE MOVIMIENTO Departamento Tecnología I.E.S. Drago Cádiz PÁG. 1 # ACTIVIDADES 1.- Indica cuáles de las siguientes máquinas son simples y cuáles compuestas: Abrelatas Pinzas Reloj de pared Abrebotellas Batidora Tornillo

Más detalles

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el FUERZAS SOBRE CORRIENTES 1. Un conductor de 40 cm de largo, con una intensidad de 5 A, forma un ángulo de 30 o con un campo magnético de 0,5 T. Qué fuerza actúa sobre él?. R: 0,5 N 2. Se tiene un conductor

Más detalles

Asignatura: Diseño de Máquinas [320099020] 4º Tema.- Chavetas y uniones enchavetadas.

Asignatura: Diseño de Máquinas [320099020] 4º Tema.- Chavetas y uniones enchavetadas. Universidad de Huelva ESCUELA POLITECNICA SUPERIOR Departamento de Ingeniería Minera, Mecánica y Energética Asignatura: Diseño de Máquinas [320099020] 3º curso de Ingeniería Técnica Industrial (Mecánicos)

Más detalles

APUNTES DE TECNOLOGÍA 1ºESO MECANISMOS

APUNTES DE TECNOLOGÍA 1ºESO MECANISMOS APUNTES DE TECNOLOGÍA 1ºESO MECANISMOS 1. INTRODUCCIÓN MECANISMO: Son elementos destinados a transmitir y/o transformar fuerzas y/o movimientos desde un elemento motriz (motor) a un elemento conducido

Más detalles

CÁLCULOS EN ACTUADORES NEUMÁTICOS

CÁLCULOS EN ACTUADORES NEUMÁTICOS CÁLCULOS EN ACTUADORES NEUMÁTICOS NEUMÁTICA E HIDRÁULICA UPIITA 01-2011 Dimensionando una válvula neumática Método 1: Cálculo matemático Para obtener el coeficiente de velocidad de la válvula, Cv, requerido

Más detalles

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo

Más detalles

INDICE Prefacio 1. Esfuerzo Parte A. Conceptos generales. Esfuerzo Parte B. Análisis de esfuerzo de barras cargadas axialmente

INDICE Prefacio 1. Esfuerzo Parte A. Conceptos generales. Esfuerzo Parte B. Análisis de esfuerzo de barras cargadas axialmente INDICE Prefacio XV 1. Esfuerzo 1-1. Introducción 1 Parte A. Conceptos generales. Esfuerzo 1-2. Método de las secciones 3 1-3. Definición de esfuerzo 4 1-4. Tensor esfuerzo 7 1-5. Ecuaciones diferenciales

Más detalles

TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN. Curso 2010/11. Elaborados por los profesores:

TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN. Curso 2010/11. Elaborados por los profesores: TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN Curso 2010/11 Elaborados por los profesores: Luis Bañón Blázquez (PCO) Fco. Borja Varona Moya (PCO) Salvador Esteve Verdú (ASO) PRÓLOGO La

Más detalles

Criterios para el dimensionado de las uniones soldadas en estructuras de acero en edificación

Criterios para el dimensionado de las uniones soldadas en estructuras de acero en edificación Criterios para el dimensionado de las uniones soldadas en estructuras de acero en edificación Apellidos, nombre Arianna Guardiola Víllora (aguardio@mes.upv.es) Departamento Centro Mecánica del Medio Continuo

Más detalles

TRABAJO PRACTICO N 6 COLUMNAS ARMADAS

TRABAJO PRACTICO N 6 COLUMNAS ARMADAS TRABAJO PRACTICO N 6 COLUMNAS ARMADAS Ejercicio Nº 1: Definir los siguientes conceptos, indicando cuando sea posible, valores y simbología utilizada: 1. Eje fuerte. Eje débil. Eje libre. Eje material.

Más detalles

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO 1.- Sobre una partícula de masa 500 g actúan las fuerzas F 1 = i 2j y F 2 = 2i + 4j (N). Se pide: a) Dibuje dichas fuerzas en el plano XY. b) La fuerza resultante

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

16. exacto 17. 18. coordenadas geográficas

16. exacto 17. 18. coordenadas geográficas 15. Historia muda: 16. En la siguiente figura aparece la mitad y un cuarto de esfera de radio 4 cm. Calcule el valor exacto en términos de π,de las áreas totales y los dos volúmenes. 17. Se coloca una

Más detalles

CUADERNO DE TRABAJO INVESTIGACIÓN DE DE FÍSICA II

CUADERNO DE TRABAJO INVESTIGACIÓN DE DE FÍSICA II CUADERNO DE TRABAJO INVESTIGACIÓN DE DE FÍSICA II ANÍBAL CADENA E. CATEDRÁTICO DE LA UNIVERSIDAD 1 INTRODUCCIÓN A lo largo del curso, usted trabajara la parte teórica mediante la elaboración de mapas mentales

Más detalles

Hoja de problemas nº 7. Introducción a la Geometría

Hoja de problemas nº 7. Introducción a la Geometría Hoja de problemas nº 7 Introducción a la Geometría 1. Un rectángulo tiene de área 135 u 2 a. Si sus lados miden números enteros, averigua cuáles pueden ser sus dimensiones. b. Cortamos los vértices como

Más detalles

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que Guía práctica Dinámica I: fuerza y leyes de Newton Física Estándar Anual Nº Ejercicios PSU Para esta guía considere que la magnitud de la aceleración de gravedad (g) es 10 1. 2. GUICES016CB32-A16V1 m.

Más detalles

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO http://www.juntadeandalucia.es/averroes/copernico/fisica.htm Ronda de las Huertas. Écija. e-mail: emc2@tiscali.es ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO 1. Una carga eléctrica, q = 3,2.10-19 C,

Más detalles

2.13.- MÉTODO DE CROSS: PARTICULARIDADES %)

2.13.- MÉTODO DE CROSS: PARTICULARIDADES %) 2.13.- MÉTODO DE CROSS: PARTICULARIDADES %) & TEORÍA DE ARCOS Y MÉTODO DE CROSS APLICADOS AL CÁLCULO DE ESTRUCTURAS 2.14.- MÉTODO DE CROSS: PARTICULARIDADES &! &" TEORÍA DE ARCOS Y MÉTODO DE CROSS APLICADOS

Más detalles

Programa de la asignatura. ASIGNATURA: Elasticidad y Resistencia de Materiales. Código: 141212004 Titulación: INGENIERO INDUSTRIAL Curso: 2º

Programa de la asignatura. ASIGNATURA: Elasticidad y Resistencia de Materiales. Código: 141212004 Titulación: INGENIERO INDUSTRIAL Curso: 2º ASIGNATURA: Elasticidad y Resistencia de Materiales Código: 141212004 Titulación: INGENIERO INDUSTRIAL Curso: 2º (2012 / 2013) Profesor(es) responsable(s): - MARIANO VICTORIA NICOLÁS Departamento: ESTRUCTURAS

Más detalles

Módulo 3: Fluidos reales

Módulo 3: Fluidos reales Módulo 3: Fluidos reales 1 Fluidos reales Según la ecuación de Bernouilli, si un fluido fluye estacionariamente (velocidad constante) por una tubería horizontal estrecha y de sección transversal constante,

Más detalles

CONDENSADOR CILÍNDRICO Y ESFÉRICO. ASOCIACIÓN DE CONDENSADORES. 1. Determinar su capacidad. 2. La expresión de la energía almacenada entre sus placas.

CONDENSADOR CILÍNDRICO Y ESFÉRICO. ASOCIACIÓN DE CONDENSADORES. 1. Determinar su capacidad. 2. La expresión de la energía almacenada entre sus placas. CONDENSADOR CILÍNDRICO Y ESFÉRICO. ASOCIACIÓN DE CONDENSADORES. P1.- Un condensador esférico está compuesto por dos esferas concéntricas, la interior de radio r y la exterior (hueca) de radio interior

Más detalles