Modelos de distribuciones discretas y continuas


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Modelos de distribuciones discretas y continuas"

Transcripción

1 Modelos de distribuciones discretas y continuas Discretas En la versión actual de Rcdmr podemos encontrar las distribuciones discretas estudiadas en este curso y para cada una de ellas están disponibles diferentes opciones. El menú Discretas Se mostrará un desplegable con las distintas distribuciones. Seleccionar la distribución a estudiar. Una vez seleccionada una distribución aparecerán las siguientes opciones: Cuantiles: Calcula el valor de la variable que deja a la derecha o izquierda (según se seleccione) una determinada probabilidad. Probabilidades acumuladas: Calcula P[ X x] (cola a la izquierda) o [ X x] la derecha) P (cola a Probabilidad: Calcula la probabilidad de que la variable tome un valor especificado. Gráfica de la distribución elegida: Muestra la gráfica de la función masa de probabilidad y función de distribución. Muestra de la distribución elegida: Genera muestras aleatorias de la correspondiente distribución. Distribución binomial: X una v.a. con distribución binomial de parámetros n y p. Para calcular cualquiera de las opciones comentadas anteriormente debemos especificar los parámetros de la distribución binomial que estemos considerando. Ejemplo: Un test de elección múltiple consta de 25 preguntas, cada una con 4 respuestas. Un estudiante se dispone a contestar el test. a) Cuál es la probabilidad de que el estudiante responda 4 preguntas? b) Cuál es la probabilidad de que el estudiante responda al menos 20 preguntas? c) Cuál es la probabilidad de que el estudiante responda menos de 5 preguntas?

2 2 Solución a) Para responder a la primera pregunta como nos piden la probabilidad de que la v.a. tome un valor concreto, Discretas Distribución Binomial Probabilidades Binomiales En la salida muestra la función masa de probabilidad de esta variable. b) La probabilidad que se pide es P [ X 20] Discretas Distribución Binomial Probabilidades acumuladas

3 3 c) La probabilidad que se pide es P [ X < 5] Discretas Distribución Binomial Probabilidades acumuladas Representación gráfica

4 4 Binomial Distribution: Binomial tria Probability Mass Number of Successes Si deseamos la gráfica de la function de distribución:

5 5 Binomial Distribution: Binomial tria Cumulative Probability Number of Successes Distribución de Poisson: X una v.a. con distribución de Poisson de parámetro λ. Para calcular cualquiera de las opciones comentadas anteriormente debemos especificar los parámetros de la distribución de Poisson que estemos considerando. Ejemplo: El número de defectos en paneles de plástico utilizados en el interior de los automóviles se distribuye según una Poisson de media 0.5 defectos por metro cuadrado. Los coches tiene 1 m 2 de panel de plástico. a) Cuál es la probabilidad de que no haya defectos en el interior de un automóvil? b) Cuál es la probabilidad de que haya más de 3 defectos por m 2? c) Cuál es la probabilidad de que haya dos o menos defectos por m 2? d) La fábrica de estos automóviles vende diez a una empresa de alquiler de coches, cuál es la probabilidad de que ninguno tenga defectos? e) En las hipótesis del apartado anterior, cuál es la probabilidad de que como máximo un coche tenga defectos?

6 6 Solución a) Para responder a la primera pregunta como nos piden la probabilidad de que la v.a. tome un valor concreto, Discretas Distribución Poisson Probabilidades de Poisson Por tanto, la probabilidad pedida es P X > 3 b) La probabilidad que se pide es [ ] Discretas Distribución de Poisson Probabilidades acumuladas

7 7 d) La probabilidad que se pide es P [ X 2] Discretas Distribución de Poisson Probabilidades acumuladas Representación gráfica

8 8 Poisson Distribution: Mean=0.5 Probability Mass x Poisson Distribution: Mean=0.5 Cumulative Probability x

9 9 Distribución Geométrica y Binomial Negativa: X una v.a. con distribución binomial negativa de parámetros r y p. Para calcular cualquiera de las opciones comentadas anteriormente debemos especificar los parámetros de esta distribución. Ejemplo: Un vendedor de alarmas de hogar tiene exito en una casa de cada diez que visita. Calcular: a) La probabilidad de que en un día determinado consiga vender la primera alarma en la sexta casa que visita. b) La probabilidad de que no venda ninguna después de siete viviendas. c) Si se plantea vender tres alarmas, cuál es la probabilidad de que consiga su objetivo en la octava vivienda que visita? Solución a) Se define la variable X= número de casas que visita antes de conseguir vender la primera alarma Esta v.a. se distribuye según una Geométrica p= 0.1. Discretas Distribución Geométrica Probabilidades geométricas P(X = 5) = e 02.

10 10 b) La probabilidad de que no venda ninguna después de siete viviendas visitadas. La variable X= número de alarmas vendidas en 7 viviendas sigue una distribución Binomial con ocho ensayos de Bernoulli y probabilidad de éxito= 0.1, luego en nuestro caso se tiene P(X = 0) = 0, c) Si se plantea vender tres alarmas, cuál es la probabilidad de que consiga su objetivo en la octava vivienda que visita? La variable X= número de viviendas visitadas hasta vender tres alarmas sigue una distribución Binomial negativa de parámetros 3 y p. Distribución Hipergeométrica: X una v.a. con distribución hipergeométrica de parámetros número de éxitos, fracasos y tamaño de la muestra. Ejemplo: Un envío de productos químicos llega en 15 lotes. Se seleccionan al azar y sin reemplazamiento tres lotes para una inspección sobre la pureza de los productos. Si dos de los lotes no se ajustan a los requisitos de pureza, cuál es la probabilidad de que se haya seleccionado al menos un lote que no cumpla los requisitos?

11 11 Continuas En la versión actual de Rcdmr podemos encontrar las distribuciones continuas estudiadas en este curso y para cada una de ellas están disponibles diferentes opciones. El menú Continuas Se mostrará un desplegable con las distintas distribuciones. Seleccionar la distribución a estudiar. Una vez seleccionada una distribución aparecerán las siguientes opciones: Cuantiles: Calcula el valor de la variable que deja a la derecha o izquierda (según se seleccione) una determinada probabilidad. Probabilidades: Calcula P[ X x] (cola a la izquierda) o [ X x] P (cola a la derecha) Gráfica de la distribución elegida: Muestra la gráfica de la función de densidad y función de distribución. Muestra de la distribución elegida: Genera muestras aleatorias de la correspondiente distribución. Distribución Uniforme: X una v.a. con distribución uniforme (a, b). Para calcular cualquiera de las opciones comentadas anteriormente debemos especificar el valor mínimo a y el máximo b. Ejemplo: El tiempo que tarda un operador de bases de datos en rellenar un formulario electrónico es uniforme en 1.5 a 2.2 minutos. a) Cuál es la probabilidad de que tarde menos de dos minutos? b) Determinar el tiempo medio que tarda un operador en rellenar un formulario. Calcular la función de distribución. Solución a) Se define la variable X= minutos que se tarda en rellenar un formulario se distribuye según una uniforme (1.5, 2.2)

12 12 Continuas Distribución Uniforme Probabilidades uniformes Distribución Exponencial: X una v.a. con distribución exponencial de parámetro λ. Para calcular cualquiera de las opciones comentadas anteriormente debemos especificar el valor del parámetro. Ejemplo: La duración media de un modelo de marcapasos es de 7 años. a) Cuál es la probabilidad de que dure al menos 5 años? y menos de 3? b) Si han transcurrido ya 4 años desde su implantación, cuál es la probabilidad de que dure otros 4? c) Cuánto tiempo debería funcionar un marcapasos para estar entre el 10% de los que más duran? Solución a) La variable X= tiempo de funcionamiento del marcapasos sigue una distribución exponencial con parámetro λ = 1/7. Continuas Distribución Exponencial Probabilidades exponenciales

13 13 y obtenemos el valor buscado, P(X 5). b) La probabilidad que nos piden es P(X 8/X 4) = (1 F(8))/(1 F(4)) = 0, F(8)= y F(4)= P(X 8/X 4)= / =0, c) Hay que calcular el percentil 90 seleccionando: El valor obtenido es 16.4 años. O de forma similar P=0.1 y cola a la derecha. Distribución Normal: 2 X una v.a. con distribución exponencial de parámetro µ y σ. Para calcular cualquiera de las opciones comentadas anteriormente debemos especificar el valor del parámetro. Ejemplo: La resistencia a la compresión de muestras de cemento se puede modelar mediante una distribución normal de media 6000k/cm 2 y una desviación de 100kg/cm 2. a) Cuál es la probabilidad de que la resistencia de una muestra sea menor que 6250kg/cm 2? b) Cuál es la probabilidad de que la resistencia de una muestra esté comprendida entre 5800Kg/cm 2 y 5900Kg/cm 2? c) Qué resistencia es superada por el 95\% de las muestras?

14 14 Solución a) La variable X: resistencia a la compresión sigue una distribución normal N (6000,100 2 ). Continuas Distribución normal Probabilidades normales La probabilidad que nos piden es [ X 6250] b) P[ X 5900] = F X (5900) F (5800) P, obteniendo X = = P X x = 0. c) [ ] 95 y el valor de x=

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad 2.3. DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Parámetros de un problema Saber: Explicar el concepto de variable discreta. Explicar los conceptos y métodos de la distribución binomial, hipergeométrica,

Más detalles

Estimación de las principales distribuciones de probabilidad mediante Microsoft Excel 1

Estimación de las principales distribuciones de probabilidad mediante Microsoft Excel 1 Estimación de las principales distribuciones de probabilidad mediante Microsoft Excel Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento

Más detalles

Explicación de la tarea 3 Felipe Guerra

Explicación de la tarea 3 Felipe Guerra Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La

Más detalles

Algunas Distribuciones de Probabilidad

Algunas Distribuciones de Probabilidad Relación de problemas 7 Algunas Distribuciones de Probabilidad 1. En un hospital se ha comprobado que la aplicación de un tratamiento en enfermos de cirrosis produce una cierta mejoría en el 80 % de los

Más detalles

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0)

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0) 1. La rueda de una ruleta se divide en 25 sectores de igual área que se enumeran del 1 al 25. Encuentra una fórmula para la distribución de probabilidades de la v.a. X que representa el número obtenido

Más detalles

Problemas. Variables Aleatorias. Modelos de Probabilidad

Problemas. Variables Aleatorias. Modelos de Probabilidad Problemas. Variables Aleatorias. Modelos de Probabilidad Ejemplos resueltos y propuestos Variables Aleatorias Discretas Una variable aleatoria discreta X de valores x 1, x 2,..., x k con función de probabilidad

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o Profesor: Hugo S. Salinas. Segundo Semestre. RESOLVER. 3

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

PRACTICA 2: Distribuciones de probabilidad discretas

PRACTICA 2: Distribuciones de probabilidad discretas Fn(x) 0.0 0.2 0.4 0.6 0.8 1.0 1 0 1 2 3 4 5 x PRACTICA 2: Distribuciones de probabilidad discretas 1. Clasi que las siguientes variables como discretas o continuas: (a) Número de crías (b) Peso del contenido

Más detalles

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p Universidad de Sevilla Facultad de Ciencias Económicas y Empresariales Licenciatura de Economía Universidad de Sevilla ESTADÍSTICA I RELACIÓN 5 MODELOS Y DATOS ESTADÍSTICOS DEPARTAMENTO DE ECONOMÍA APLICADA

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

Relación de Problemas. Modelos de Probabilidad

Relación de Problemas. Modelos de Probabilidad Relación de Problemas. Modelos de Probabilidad 1. Sabemos que en una ciudad, de cada 50000 personas, 1500 están viendo un cierto programa de TV. Cuál es la probabilidad de que de 100 personas elegidas

Más detalles

Problemas resueltos por los alumnos

Problemas resueltos por los alumnos Problemas resueltos por los alumnos 1. Una empresa fabrica bombillas blancas de bajo consumo cuya duración media es de 10 años, pero algunas de ellas son defectuosas y tienen una vida media de 1 año. Se

Más detalles

Práctica 3. Distribuciones de probabilidad

Práctica 3. Distribuciones de probabilidad Práctica 3. Distribuciones de probabilidad Estadística Facultad de Física Objetivos Distribuciones Representaciones gráficas Ejercicios Aplicaciones 1 Introducción En esta práctica utilizaremos una herramienta

Más detalles

Tema 1 con soluciones de los ejercicios. María Araceli Garín

Tema 1 con soluciones de los ejercicios. María Araceli Garín Tema 1 con soluciones de los ejercicios María Araceli Garín Capítulo 1 Introducción. Probabilidad en los modelos estocásticos actuariales Se describe a continuación la Tarea 1, en la que se enumeran un

Más detalles

con R y R Commander (Versión Febrero 2008) Autores: A. J. Arriaza Gómez M. A. López Sánchez S. Pérez Plaza A. Sánchez Navas

con R y R Commander (Versión Febrero 2008) Autores: A. J. Arriaza Gómez M. A. López Sánchez S. Pérez Plaza A. Sánchez Navas Estadística Básica con R y R Commander (Versión Febrero 2008) Autores: A. J. Arriaza Gómez F. Fernández Palacín M. A. López Sánchez M. Muñoz Márquez S. Pérez Plaza A. Sánchez Navas Copyright c 2008 Universidad

Más detalles

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Problema 1 PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Hoja 2 Una población de 20 animales insectívoros se introduce en una zona donde el 14% de los insectos que le sirven de alimento son venenosos. Cada

Más detalles

TALLER N 5 DE ESTADÍSTICA

TALLER N 5 DE ESTADÍSTICA UNIVERSIDAD CATÓLICA DEL MAULE FACULTAD DE CIENCIAS BÁSICAS PEDAGOGÍA EN MATEMÁTICA Y COMPUTACIÓN TALLER N 5 DE ESTADÍSTICA Integrante 1 : Victor Córdova Cornejo (heibubu@hotmail.com) Integrante 2 : Rodrigo

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. b) Las medias muestrales de tamaño n se distribuyen según la normal

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. b) Las medias muestrales de tamaño n se distribuyen según la normal 1 DISTRIBUCIÓN DE LA MEDIA MUESTRAL La mayoría de estos problemas han sido propuestos en exámenes de selectividad de los distintos distritos universitarios españoles. 1. Considérese una población en la

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA SEGUNDA PRUEBA PARCIAL Profesor: Hugo S. Salinas. Primer Semestre 2009 1. Resolver los siguientes

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

Introducción a la Estadística y a la Probabilidad Tercer examen. Capítulo 5 y 6. Viernes 5 de febrero del 2010.

Introducción a la Estadística y a la Probabilidad Tercer examen. Capítulo 5 y 6. Viernes 5 de febrero del 2010. Introducción a la Estadística y a la Probabilidad Tercer examen. Capítulo 5 y 6. Viernes 5 de febrero del 2010. Dos puntos 1. Para cada una de las siguientes variables, indica si son variables aleatorias,

Más detalles

PROBLEMAS DE SIMULACIÓN PARA RESOLVER POR EL MÉTODO DE MONTECARLO.

PROBLEMAS DE SIMULACIÓN PARA RESOLVER POR EL MÉTODO DE MONTECARLO. PROBLEMAS DE SIMULACIÓN PARA RESOLVER POR EL MÉTODO DE MONTECARLO. PROBLEMA 1 A un puerto de carga y descarga de material, llegan durante la noche los barcos, que serán descargados durante el día siguiente.

Más detalles

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS A) INTRODUCCIÓN Una distribución de probabilidad es una representación de todos los resultados posibles de algún experimento y de la probabilidad relacionada

Más detalles

En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10).

En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10). MODELOS DE PROBABILIDAD En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10). (a) Si tomamos dos manzanos al azar, cuál

Más detalles

Tema 1: Test de Distribuciones de Probabilidad

Tema 1: Test de Distribuciones de Probabilidad Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).

Más detalles

Ejercicios distribuciones discretas probabilidad

Ejercicios distribuciones discretas probabilidad Ejercicios distribuciones discretas probabilidad 1. Una máquina que produce cierta clase de piezas no está bien ajustada. Un porcentaje del 4.2% de las piezas están fuera de tolerancias, por lo que resultan

Más detalles

Problemas resueltos del Tema 3.

Problemas resueltos del Tema 3. Terma 3. Distribuciones. 9 Problemas resueltos del Tema 3. 3.1- Si un estudiante responde al azar a un examen de 8 preguntas de verdadero o falso Cual es la probabilidad de que acierte 4? Cual es la probabilidad

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. Sean A y B dos sucesos y A, B sus complementarios. Si se verifica que p( B) = 2 / 3, p( A B) = 3 / 4 y p( A B) = 1/ 4, hallar: p( A), p( A B), y la probabilidad condicionada

Más detalles

ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus José Carlos Vega Vilca, Ph.D.

ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus José Carlos Vega Vilca, Ph.D. UNIVERSIDAD DE PUERTO RICO FACULTAD DE ADMINISTRACION DE EMPRESAS INSTITUTO DE ESTADISTICA ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus, Ph.D. Presentación Este curso ofrece al estudiante, la posibilidad

Más detalles

Distribuciones de probabilidad con R Commander

Distribuciones de probabilidad con R Commander Distribuciones de probabilidad con R Commander En el menú Distribuciones podemos seleccionar Distribuciones discretas Distribuciones continuas Las distribuciones discretas que aparecen en R Commander son

Más detalles

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación.

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación. PROBLEMAS 5.1. El famoso juego 7-11, requiere que el jugador lance dos dados una v. más veces hasta tomar la decisión de que se gana o se pierde el juego. El juego se gana si en el primer lanzamiento los

Más detalles

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria Tema 3: Variable aleatoria 9 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Tema 3: Variable aleatoria 1. Probar si las siguientes funciones pueden definir funciones

Más detalles

DISTRIBUCIONES DE VARIABLE CONTINUA

DISTRIBUCIONES DE VARIABLE CONTINUA UNIDAD 11 DISTRIBUCIONES DE VARIABLE CONTINUA Página 260 1. Los trenes de una cierta línea de cercanías pasan cada 20 minutos. Cuando llegamos a la estación, ignoramos cuándo pasó el último. La medida

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).

Más detalles

CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS

CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-15-4492-6252 Fax:

Más detalles

Análisis de los datos

Análisis de los datos Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Análisis de los datos Hojas de cálculo Tema 6 Análisis de los datos Una de las capacidades más interesantes de Excel es la actualización

Más detalles

SOLUCION ASIGNACIÓN 4

SOLUCION ASIGNACIÓN 4 SOLUCION ASIGNACIÓN 4 Problema 1 Harley Davidson, director de control de calidad de la compañía de automóviles Kyoto Motor, se encuentra realizando su revisión mensual de transmisiones automáticas. En

Más detalles

Unidad 4: Variables aleatorias

Unidad 4: Variables aleatorias Unidad 4: Variables aleatorias Logro de la unidad 4 Al finalizar la unidad 4, el alumno aplica el concepto de variable aleatoria, valor esperado y probabilidad para la toma de decisiones en un trabajo

Más detalles

Grado en Ingeniería. Estadística. Tema 3

Grado en Ingeniería. Estadística. Tema 3 Grado en Ingeniería Asignatura: Estadística Tema 3. Control Estadístico de Procesos (SPC) Control Estadístico de Procesos (SPC) Introducción Variabilidad de un proceso de fabricación Causas asignables

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA PROBABILIDAD Y ESTADÍSTICA GUÍA 3: VARIABLES ALEATORIAS DISCRETAS Y DISTRIBUCIONES DE PROBABILIDAD Plan Común de Ingeniería 1.

Más detalles

Muestreo estadístico. Relación 2 Curso 2007-2008

Muestreo estadístico. Relación 2 Curso 2007-2008 Muestreo estadístico. Relación 2 Curso 2007-2008 1. Para tomar la decisión de mantener un determinado libro como texto oficial de una asignatura, se pretende tomar una muestra aleatoria simple entre los

Más detalles

Práctica 3 Distribuciones de probabilidad

Práctica 3 Distribuciones de probabilidad Práctica 3 Distribuciones de probabilidad Contenido 1 Objetivos 1 2 Distribuciones de variables aleatorias 1 3 Gráficas de funciones de distribución, densidad y probabilidad 6 4 Bibliografía 10 1 Objetivos

Más detalles

MANUAL DE AYUDA MODULO TALLAS Y COLORES

MANUAL DE AYUDA MODULO TALLAS Y COLORES MANUAL DE AYUDA MODULO TALLAS Y COLORES Fecha última revisión: Enero 2010 Índice TALLAS Y COLORES... 3 1. Introducción... 3 CONFIGURACIÓN PARÁMETROS TC (Tallas y Colores)... 3 2. Módulos Visibles... 3

Más detalles

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 1 Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 2 ÍNDICE Introducción 3 Aplicaciones de la Simulación 3 La Metodología de la Simulación por Computadora 5 Sistemas, modelos

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

SIMULACION. Formulación de modelos: solución obtenida de manera analítica

SIMULACION. Formulación de modelos: solución obtenida de manera analítica SIMULACION Formulación de modelos: solución obtenida de manera analítica Modelos analíticos: suposiciones simplificatorias, sus soluciones son inadecuadas para ponerlas en práctica. Simulación: Imitar

Más detalles

axtpv - Manual del usuario axtpv Profesional

axtpv - Manual del usuario axtpv Profesional axtpv Profesional 1 1. Introducción. axtpv POS Profesional es un producto para dispositivos Android creado para comercios de todo tipo, tanto de Restauración como de Retail. La funcionalidad puede cambiar

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Variables aleatorias continuas Hemos definido que una variable aleatoria X es discreta si I X es un conjunto finito o infinito numerable. En la práctica las variables aleatorias discretas sirven como modelos

Más detalles

Distribuciones discretas. Distribución Binomial

Distribuciones discretas. Distribución Binomial Boletín: Distribuciones de Probabilidad IES de MOS Métodos estadísticos y numéricos Distribuciones discretas. Distribución Binomial 1. Una urna contiene 3 bolas blancas, 1 bola negra y 2 bolas azules.

Más detalles

CURSO P para ti examen P SoA CAS repaso agilidad inscripción necesidades inglés calculadora Curso P

CURSO P para ti examen P SoA CAS repaso agilidad inscripción necesidades inglés calculadora Curso P 1 CURSO P Este curso es para ti si deseas fortalecer tus conocimientos prácticos de probabilidad y realizar el examen P (Probability) de la SoA (Society of Actuaries), a veces llamado examen 1/P por ser

Más detalles

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores.

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores. 2.2.- Ha sido medida la distancia de frenado (en metros) de una determinada marca de coches, según el tipo de suelo y velocidad a la que circula, los resultados en 64 pruebas aparecen en el listado siguiente:

Más detalles

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS DESCRIPCIÓN DEL TEMA: 10.1. Introducción. 10.2. Método de las transformaciones. 10.3. Método de inversión. 10.4. Método de aceptación-rechazo.

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática. Investigación Operativa Práctica 6: Simulación

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática. Investigación Operativa Práctica 6: Simulación UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Investigación Operativa Práctica 6: Simulación Guión práctico: Generación de Números Aleatorios y Simulación Monte Carlo Curso 08/09 Objetivo: Aprender

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA Notas de clase Profesores: A. Leonardo Bañuelos S. Nayelli Manzanarez Gómez TEMA IV MODELOS PROBABILÍSTICOS COMUNES INTRODUCCIÓN Las variables aleatorias sirven para modelar

Más detalles

Problemas de Probabilidad resueltos.

Problemas de Probabilidad resueltos. Problemas de Probabilidad resueltos. Problema 1 El profesor Pérez olvida poner su despertador 3 de cada 10 dias. Además, ha comprobado que uno de cada 10 dias en los que pone el despertador acaba no levandandose

Más detalles

Algunas distribuciones importantes de probabilidad

Algunas distribuciones importantes de probabilidad Capítulo 5 Algunas distribuciones importantes de probabilidad En los temas anteriores se presentaban ejemplos de distintos experimentos aleatorios y de variables aleatorias que expresan sus resultados.

Más detalles

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125. MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido

Más detalles

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras Unidad 6 Distribuciones de probabilidad continua, muestreo y distribución de muestras Introducción La unidad 5 se enfocó en el estudio de las distribuciones de probabilidad discreta, entre las cuales

Más detalles

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I 1. Supongamos que Ω = A B y P (A B) = 0.2. Hallar: (a) El máximo valor posible para P (B), de tal manera

Más detalles

Tema 3. Variables aleatorias. Inferencia estadística

Tema 3. Variables aleatorias. Inferencia estadística Estadística y metodología de la investigación Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 3. Variables aleatorias. Inferencia estadística 1. Introducción 1 2. Variables aleatorias 1 2.1. Variable

Más detalles

ÍTEMS DEL MENÚ CREACIÓN Y GESTIÓN (Última revisión: lunes, 9 de marzo de 2009)

ÍTEMS DEL MENÚ CREACIÓN Y GESTIÓN (Última revisión: lunes, 9 de marzo de 2009) JOOMLA! ÍTEMS DEL MENÚ CREACIÓN Y GESTIÓN (Última revisión: lunes, 9 de marzo de 2009) Es necesario comentar que este manual ha sido diseñado en su mayor parte por comunidadjoomla.org. Este manual es una

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Relación de problemas: Variables aleatorias

Relación de problemas: Variables aleatorias Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución

Más detalles

MANUAL DE AYUDA TAREA PROGRAMADA COPIAS DE SEGURIDAD

MANUAL DE AYUDA TAREA PROGRAMADA COPIAS DE SEGURIDAD MANUAL DE AYUDA TAREA PROGRAMADA COPIAS DE SEGURIDAD Fecha última revisión: Diciembre 2010 Tareas Programadas TAREAS PROGRAMADAS... 3 LAS TAREAS PROGRAMADAS EN GOTELGEST.NET... 4 A) DAR DE ALTA UN USUARIO...

Más detalles

Plataforma e-ducativa Aragonesa. Manual de Administración. Bitácora

Plataforma e-ducativa Aragonesa. Manual de Administración. Bitácora Plataforma e-ducativa Aragonesa Manual de Administración Bitácora ÍNDICE Acceso a la administración de la Bitácora...3 Interfaz Gráfica...3 Publicaciones...4 Cómo Agregar una Publicación...4 Cómo Modificar

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o 2 Profesor: Hugo S. Salinas. Primer Semestre 20. El gerente

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 5: VARIABLES ALEATORIAS Y DISTRIBUCIONES CONTINUAS Profesor: Hugo S. Salinas. Segundo Semestre

Más detalles

Tema 5: Análisis conjunto y teoremas límite

Tema 5: Análisis conjunto y teoremas límite Facultad de Economía y Empresa 1 Tema 5: Análisis conjunto y teoremas límite COCHES Se han analizado conjuntamente las variables número de hijos de cada familia (X) y número de coches por familia (Y),

Más detalles

Relación de problemas: Distribuciones de probabilidad

Relación de problemas: Distribuciones de probabilidad Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Distribuciones de probabilidad 1. Un jugador de dardos da justo en la diana 2 de cada cinco veces que lanza. Si

Más detalles

Cómo hacer paso a paso un Análisis de Supervivencia con SPSS para Windows.

Cómo hacer paso a paso un Análisis de Supervivencia con SPSS para Windows. DOCUWEB FABIS Dot. Núm 0702006 Cómo hacer paso a paso un Análisis de Supervivencia con SPSS para Windows. Aguayo Canela M, Lora Monge E Servicio de Medicina Interna. Hospital Universitario Virgen Macarena.

Más detalles

efactura Online La fibra no tiene competencia

efactura Online La fibra no tiene competencia Manual efactura Online La fibra no tiene competencia ÍNDICE efactura Online Interface de efactura Online Barra Superior Área de Trabajo. Pestañas Empresas Personalizar factura Clientes Facturar Crear una

Más detalles

Índice. Página 2 de 14

Índice. Página 2 de 14 Índice Pág. 1. Requisitos... 3 2. Acceso a la plataforma online... 3 3. Estructura y funcionamiento de los cursos... 5 4. Elementos del menú lateral... 9 a. Profesor... 9 b. Soporte Técnico... 10 c. Aplicaciones

Más detalles

El e-commerce de Grupo JAB es una herramienta que permite a los clientes del Grupo, realizar un amplio conjunto de servicios de consulta, petición y

El e-commerce de Grupo JAB es una herramienta que permite a los clientes del Grupo, realizar un amplio conjunto de servicios de consulta, petición y El de Grupo JAB es una herramienta que permite a los clientes del Grupo, realizar un amplio conjunto de servicios de consulta, petición y compra en los diversos almacenes del Grupo JAB. En concreto podremos:

Más detalles

Tema 6 Algunos modelos de distribuciones discretas.

Tema 6 Algunos modelos de distribuciones discretas. Tema 6 Algunos modelos de distribuciones discretas. Una vez epuesta la teoría general sobre variables aleatorias y sus distribuciones de probabilidad, vamos a describir algunas distribuciones particulares

Más detalles

Propuesta A. b) Si A =, calcula la matriz X que cumple A X = I, donde I es la matriz identidad de orden 2. (0.75 puntos)

Propuesta A. b) Si A =, calcula la matriz X que cumple A X = I, donde I es la matriz identidad de orden 2. (0.75 puntos) Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (2012) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B.

Más detalles

EJERCICIOS RESUELTOS TEMA 3

EJERCICIOS RESUELTOS TEMA 3 EJERCICIOS RESUELTOS TEMA 3 Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar

Más detalles

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad R PRÁCTICA II Probabilidad-Variables Aleatorias Sección II.1 Probabilidad 15. En el fichero sintomas.dat se encuentran 9 columnas con los resultados de una estadística médica. Cada columna corresponde

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 2013-2014 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

2. Ejecutando JMeter en el laboratorio

2. Ejecutando JMeter en el laboratorio PARTE 2.- Introducción a Apache JMeter 1. Introducción JMeter 1 es un programa Java diseñado para hacer pruebas de carga de servidores, por ejemplo servidores web. Utilizaremos este software para evaluar

Más detalles

Documentación del CK-BaaB

Documentación del CK-BaaB Recepción de Documentos de Cobro La nueva concepción de la gestión de cobros de Ck_Baab parte de la intención de agrupar en un único programa la posibilidad de realizar de forma ágil los diferentes tipos

Más detalles

DESCRIPCIÓN DEL EXAMEN

DESCRIPCIÓN DEL EXAMEN DESCRIPCIÓN DEL La duración del eamen es de horas y 0 minutos. Con preguntas de teoría (8 preguntas) donde debemos de demostrar la respuesta y práctica (3 problemas). TEORÍA. Señale la respuesta correcta:

Más detalles

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC Abel Martín ( * ) Rosana Álvarez García ( ) En dos artículos anteriores ya hemos estudiado la distribución Binomial de parámetros

Más detalles

Problemas. Intervalos de Confianza y Contrastes de Hipótesis

Problemas. Intervalos de Confianza y Contrastes de Hipótesis Problemas. Intervalos de Confianza y Contrastes de Hipótesis Ejemplos resueltos y propuestos Intervalos de Confianza Variable Nomal en la población Se selecciona una muestra de tamaño n de una población

Más detalles

1.- INTRODUCCIÓN 2.- PARÁMETROS

1.- INTRODUCCIÓN 2.- PARÁMETROS 1.- INTRODUCCIÓN Hemos diseñado una aplicación que facilite el envío a las entidades bancarias de las de cobro por domiciliación. La entrada de esta aplicación pueden ser, tanto ficheros cuyos formatos

Más detalles

MODELOS DE PROBABILIDAD

MODELOS DE PROBABILIDAD MODELOS DE PROBABILIDAD Modelos de probabilidad Autores: Angel Juan (ajuanp@uoc.edu), Máximo Sedano (msedanoh@uoc.edu), Alicia Vila (avilag@uoc.edu), José Francisco Martínez (jmartinezbos@uoc.edu), Anna

Más detalles

FICHERO DE AYUDA DEL PROGRAMA Q9

FICHERO DE AYUDA DEL PROGRAMA Q9 FICHERO DE AYUDA DEL PROGRAMA Q9 Versión Q9 : 1.0 r2 Fecha : 10/03/2013 1. INFORMACION GENERAL El programa sirve para tratar apuestas del juego Quini9. Para más información relacionada con el juego consultar

Más detalles

MANUAL DE USO NUEVO PROGRAMA GESTION VISADOS PARA COLEGIADOS YOVISO

MANUAL DE USO NUEVO PROGRAMA GESTION VISADOS PARA COLEGIADOS YOVISO MANUAL DE USO NUEVO PROGRAMA GESTION VISADOS PARA COLEGIADOS YOVISO DIRECCION WEB DEL PROGRAMA: http://intranet.copiticadiz.es/cprof o a través de la web del Colegio una vez logueado www.copiticadiz.es

Más detalles

HOOTSUITE: GESTOR DE CUENTAS EN REDES SOCIALES

HOOTSUITE: GESTOR DE CUENTAS EN REDES SOCIALES HOOTSUITE: GESTOR DE CUENTAS EN REDES SOCIALES Índice del curso 1. HootSuite Qué es?... 3 QUÉ ES?... 3 2. HootSuite Por qué?... 5 POR QUÉ?... 5 3. Registro... 6 REGISTRO... 6 4. Interfaz... 7 INTERFAZ...

Más detalles

LAS CONSULTAS ACCESS 2007. Manual de Referencia para usuarios. Salomón Ccance CCANCE WEBSITE

LAS CONSULTAS ACCESS 2007. Manual de Referencia para usuarios. Salomón Ccance CCANCE WEBSITE LAS CONSULTAS ACCESS 2007 Manual de Referencia para usuarios Salomón Ccance CCANCE WEBSITE LAS CONSULTAS En esta unidad veremos cómo crear consultas y manejarlas para la edición de registros de tablas

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

Estimación. Intervalos de Confianza para la Media y para las Proporciones

Estimación. Intervalos de Confianza para la Media y para las Proporciones Estimación. Intervalos de Confianza para la Media y para las Proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Estimación El objetivo

Más detalles

15 CORREO WEB CORREO WEB

15 CORREO WEB CORREO WEB CORREO WEB Anteriormente Hemos visto cómo funciona el correo electrónico, y cómo necesitábamos tener un programa cliente (Outlook Express) para gestionar los mensajes de correo electrónico. Sin embargo,

Más detalles

Gobierno del Estado de México

Gobierno del Estado de México Gobierno del Estado de México Escuela Preparatoria Oficial No. 82 José Revueltas Hay que alcanzar la exaltación verdadera, para lograrlo, hay que ser serenos, sin prisas, estudiar, trabajar y disciplinarse

Más detalles

WEBMAIL AYUNTAMIENTO DE SEVILLA.

WEBMAIL AYUNTAMIENTO DE SEVILLA. WEBMAIL AYUNTAMIENTO DE SEVILLA. INDICE 1 Introducción 2 2 Descripción de la interfaz. 3 2.1 Página de acceso. 3 2.2 Página principal. 4 2.3 Redacción de mensaje. 5 2.4 Agenda. 6 2.5 Opciones de personalización

Más detalles

TUTORIAL ENVIO SMS MASIVOS. 1. Segmentación de la base de datos de clientes

TUTORIAL ENVIO SMS MASIVOS. 1. Segmentación de la base de datos de clientes TUTORIAL ENVIO SMS MASIVOS Para hacer uso de la utilidad de envío de SMS se tendrán en cuenta 3 puntos: 1. Segmentación de la base de datos de clientes, para determinar a quién va dirigido 2. Diferentes

Más detalles
Amazon.com Corporate Credit Line | Podcast Republic 18.01.28R APK modded | Domestic na Kanojo chap 20